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International System of Units (SI)

The International System of Units (SI) was adopted by the 11th General Conference on Weights and 
Measures (CGPM) in 1960. It is a coherent system of units built from seven SI base units, one for each 
of the seven dimensionally independent base quantities: the meter, kilogram, second, ampere, kelvin, 
mole, and candela, for the dimensions length, mass, time, electric current, thermodynamic temperature, 
amount of substance, and luminous intensity, respectively. The definitions of the SI base units are given 
below. The SI derived units are expressed as products of powers of the base units, analogous to the 
corresponding relations between physical quantities but with numerical factors equal to unity.

In the International System there is only one SI unit for each physical quantity. This is either the 
appropriate SI base unit itself or the appropriate SI derived unit. However, any of the approved decimal 
prefixes, called SI prefixes, may be used to construct decimal multiples or submultiples of SI units.

It is recommended that only SI units be used in science and technology (with SI prefixes where 
appropriate). Where there are special reasons for making an exception to this rule, it is recommended 
always to define the units used in terms of SI units. This section is based on information supplied by 
IUPAC.

Definitions of SI Base Units

Meter — The meter is the length of path traveled by light in vacuum during a time interval of 1/299 
792 458 of a second (17th CGPM, 1983).

Kilogram — The kilogram is the unit of mass; it is equal to the mass of the international prototype 
of the kilogram (3rd CGPM, 1901).

Second — The second is the duration of 9 192 631 770 periods of the radiation corresponding to the 
transition between the two hyperfine levels of the ground state of the cesium-133 atom (13th CGPM, 
1967).

Ampere — The ampere is that constant current which, if maintained in two straight parallel conduc-
tors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum, 
would produce between these conductors a force equal to 2 × 10–7 newton per meter of length 
(9th CGPM, 1948).

Kelvin — The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermody-
namic temperature of the triple point of water (13th CGPM, 1967).

Mole — The mole is the amount of substance of a system that contains as many elementary entities 
as there are atoms in 0.012 kilogram of carbon-12. When the mole is used, the elementary entities 
must be specified and may be atoms, molecules, ions, electrons, or other particles, or specified 
groups of such particles (14th CGPM, 1971).

Examples of the use of the mole:
1 mol of H2 contains about 6.022 × 1023 H2 molecules, or 12.044 × 1023 H atoms
1 mol of HgCl has a mass of 236.04 g
1 mol of Hg2Cl2 has a mass of 472.08 g
1 mol of Hg2+

2  has a mass of 401.18 g and a charge of 192.97 kC
1 mol of Fe0.91S has a mass of 82.88 g
1 mol of e– has a mass of 548.60 µg and a charge of – 96.49 kC
1 mol of photons whose frequency is 1014 Hz has energy of about 39.90 kJ

Candela — The candela is the luminous intensity, in a given direction, of a source that emits 
monochromatic radiation of frequency 540 × 1012 hertz and that has a radiant intensity in that 
direction of (1/683) watt per steradian (16th CGPM, 1979).
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Names and Symbols for the SI Base Units

SI Derived Units with Special Names and Symbols

Physical Quantity Name of SI Unit Symbol for SI Unit

Length Meter m
Mass Kilogram kg
Time Second s
Electric current Ampere A
Thermodynamic temperature Kelvin K
Amount of substance Mole mol
Luminous intensity Candela cd

Physical Quantity
Name of
SI Unit

Symbol for
SI Unit

Expression in
Terms of SI Base Units

Frequency 1 Hertz Hz s–1

Force Newton N m kg s–2

Pressure, stress Pascal Pa N m–2 = m–1 kg s–2

Energy, work, heat Joule J N m = m2 kg s–2

Power, radiant flux Watt W J s–1 = m2 kg s–3

Electric charge Coulomb C A s
Electric potential,  

 electromotive force
Volt V J C –1 = m2 kg s–3A–1

Electric resistance Ohm Ω V A–1 = m2 kg s–3A–2

Electric conductance Siemens S Ω–1 = m–2 kg–1 s3A2

Electric capacitance Farad F C V–1 = m–2 kg–1 s4A2

Magnetic flux density Tesla T V s m–2 = kg s–2A–1

Magnetic flux Weber Wb V s = m2 kg s–2A–1

Inductance Henry H V A–1 s = m2 kg s–2A–2

Celsius temperature2 Degree Celsius °C K
Luminous flux Lumen lm cd sr
Illuminance Lux lx cd sr m–2

Activity (radioactive) Becquerel Bq s–1

Absorbed dose (of radiation) Gray Gy J kg –1 = m2 s–2 
Dose equivalent
 (dose equivalent index)

Sievert Sv J kg –1 = m2 s–2 

Plane angle Radian rad I = m m–1

Solid angle Steradian sr I = m2 m–2

1 For radial (circular) frequency and for angular velocity, the unit rad s –1, or simply s–1, 
should be used, and this may not be simplified to Hz. The unit Hz should be used only 
for frequency in the sense of cycles per second.
2 The Celsius temperature θ is defined by the equation:

The SI unit of Celsius temperature interval is the degree Celsius, °C, which is equal to the 
kelvin, K. °C should be treated as a single symbol, with no space between the ° sign and 
the letter C. (The symbol °K, and the symbol °, should no longer be used.)

θ °C⁄ T K 273.15–⁄=



© 2003 by CRC Press LLC

Units in Use Together with the SI

These units are not part of the SI, but it is recognized that they will continue to be used in appropriate 
contexts. SI prefixes may be attached to some of these units, such as milliliter, ml; millibar, mbar; 
megaelectronvolt, MeV; and kilotonne, ktonne.

Conversion Constants and Multipliers

Recommended Decimal Multiples and Submultiples

  Physical  
Quantity Name of Unit Symbol for Unit Value in SI Units

Time Minute min 60 s
Time Hour h 3600 s
Time Day d 86 400 s
Plane angle Degree ° (π /180) rad
Plane angle Minute ′ (π /10 800) rad
Plane angle Second ″ (π /648 000) rad
Length Ångstrom1 Å 10–10 m
Area Barn b 10–28 m2

Volume Liter l, L dm3 = 10–3 m3

Mass Tonne t Mg = 103 kg
Pressure Bar 1 bar 105 Pa = 105 N m–2

Energy Electronvolt 2 eV (= e × V)  ≈ 1.60218 × 10–19 J
Mass Unified atomic 

 mass unit2,3

u (= ma(12C)/12)  ≈ 1.66054 × 10–27 kg

1 The ångstrom and the bar are approved by CIPM for “temporary use with  
SI units,” until CIPM makes a further recommendation. However, they  
should not be introduced where they are not used at present.
2 The values of these units in terms of the corresponding SI units are not 
exact, since they depend on the values of the physical constants e (for the 
electronvolt) and NA (for the unified atomic mass unit), which are deter-
mined by experiment.
3 The unified atomic mass unit is also sometimes called the dalton, with 
symbol Da, although the name and symbol have not been approved by  
CGPM.

Multiples and 
Submultiples Prefixes Symbols

Multiples and 
Submultiples Prefixes Symbols

1018 exa E 10–1 deci d
1015 peta P 10–2 centi c
1012 tera T 10–3 milli m
109 giga G 10–6 micro µ (Greek mu)
106 mega M 10–9 nano n
103 kilo k 10–12 pico p
102 hecto h 10–15 femto f
10 deca da 10–18 atto a
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Conversion Factors — Metric to English

Conversion Factors — English to Metric*

* Boldface numbers are exact; others are given to ten significant figures where so indicated by the multiplier factor.

Conversion Factors — General*

To obtain Multiply By

Inches Centimeters 0.3937007874
Feet Meters 3.280839895
Yards Meters 1.093613298
Miles Kilometers 0.6213711922
Ounces Grams 3.527396195 × 10–2

Pounds Kilograms 2.204622622
Gallons (U.S. liquid) Liters 0.2641720524
Fluid ounces Milliliters (cc) 3.381402270 × 10–2

Square inches Square centimeters 0.1550003100
Square feet Square meters 10.76391042
Square yards Square meters 1.195990046
Cubic inches Milliliters (cc) 6.102374409 × 10–2

Cubic feet Cubic meters 35.31466672
Cubic yards Cubic meters 1.307950619

To obtain Multiply By

Microns Mils 25.4
Centimeters Inches 2.54
Meters Feet 0.3048
Meters Yards 0.9144
Kilometers Miles 1.609344
Grams Ounces 28.34952313
Kilograms Pounds 0.45359237
Liters Gallons (U.S. liquid) 3.785411784
Millimeters (cc) Fluid ounces 29.57352956
Square centimeters Square inches 6.4516
Square meters Square feet 0.09290304
Square meters Square yards 0.83612736
Milliliters (cc) Cubic inches 16.387064
Cubic meters Cubic feet 2.831684659 × 10–2

Cubic meters Cubic yards 0.764554858

To obtain Multiply By

Atmospheres Feet of water @ 4°C 2.950 × 10–2

Atmospheres Inches of mercury @ 0°C 3.342 × 10–2

Atmospheres Pounds per square inch 6.804 × 10–2

BTU Foot-pounds 1.285 × 10–3

BTU Joules 9.480 × 10–4

Cubic feet Cords 128
Degree (angle) Radians 57.2958
Ergs Foot-pounds 1.356 × 107

Feet Miles 5280
Feet of water @ 4°C Atmospheres 33.90
Foot-pounds Horsepower-hours 1.98 × 106

Foot-pounds Kilowatt-hours 2.655 × 106

Foot-pounds per min Horsepower 3.3 × 104

Horsepower Foot-pounds per sec 1.818 × 10–3

Inches of mercury @ 0°C Pounds per square inch 2.036
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* Boldface numbers are exact; others are given to ten significant figures where so indicated by the multiplier factor.

Temperature Factors

Fahrenheit temperature = 1.8 (temperature in kelvins) – 459.67

Celsius temperature = temperature in kelvins – 273.15
Fahrenheit temperature = 1.8 (Celsius temperature) + 32

Conversion of Temperatures

Physical Constants

General

Equatorial radius of the earth = 6378.388 km = 3963.34 miles (statute).
Polar radius of the earth = 6356.912 km = 3949.99 miles (statute).
1 degree of latitude at 40° = 69 miles.

Joules BTU 1054.8
Joules Foot-pounds 1.35582
Kilowatts BTU per min 1.758 × 10–2

Kilowatts Foot-pounds per min 2.26 × 10–5

Kilowatts Horsepower 0.745712
Knots Miles per hour 0.86897624
Miles Feet 1.894 × 10–4

Nautical miles Miles 0.86897624
Radians Degrees 1.745 × 10–2

Square feet Acres 43560
Watts BTU per min 17.5796

From To

°Celsius °Fahrenheit

Kelvin

°Rankine

°Fahrenheit °Celsius

Kelvin

°Rankine

Kelvin °Celsius

°Rankine

°Rankine °Fahrenheit

Kelvin

To obtain Multiply By

°F 9 5 °C( )⁄ 32+=

°C 5 9 °F( )  32–[ ]⁄=

tF tC 1.8×( ) 32+=

TK tC 273.15+=

TR tC 273.15+( ) 18×=

tC
tF 32–

1.8
---------------=

TK
tF 32–

1.8
--------------- 273.15+=

TR tF 459.67+=

tC TK 273.15–=

TR TK 1.8×=

tF TR 459.67–=

TK
TR

1.8
-------=
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1 international nautical mile = 1.15078 miles (statute) = 1852 m = 6076.115 ft.
Mean density of the earth = 5.522 g/cm3 = 344.7 lb/ft3.
Constant of gravitation (6.673 ± 0.003) × 10–8 cm3 gm–1s–2.
Acceleration due to gravity at sea level, latitude 45° = 980.6194 cm/s2 = 32.1726 ft/s2.
Length of seconds pendulum at sea level, latitude 45° = 99.3575 cm = 39.1171 in.
1 knot (international) = 101.269 ft/min = 1.6878 ft/s = 1.1508 miles (statute)/h.
1 micron = 10–4 cm.
1 ångstrom = 10–8 cm.
Mass of hydrogen atom = (1.67339 ± 0.0031) × 10–24 g.
Density of mercury at 0°C = 13.5955 g/ml.
Density of water at 3.98°C = 1.000000 g/ml.
Density, maximum, of water, at 3.98°C = 0.999973 g/cm3.
Density of dry air at 0°C, 760 mm = 1.2929 g/l.
Velocity of sound in dry air at 0°C = 331.36 m/s = 1087.1 ft/s.
Velocity of light in vacuum = (2.997925 ± 0.000002) × 1010 cm/s.
Heat of fusion of water 0°C = 79.71 cal/g.
Heat of vaporization of water 100°C = 539.55 cal/g.
Electrochemical equivalent of silver = 0.001118 g/s international amp.
Absolute wavelength of red cadmium light in air at 15°C, 760 mm pressure = 6438.4696 Å.
Wavelength of orange-red line of krypton 86 = 6057.802 Å.

� Constants

Constants Involving e

Numerical Constants

π 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37511=

1 π⁄ 0.31830 98861 83790 67153 77675 26745 02872 40689 19291 48091=

π2 9.8690 44010 89358 61883 44909 99876 15113 53136 99407 24079=

log eπ 1.14472 98858 49400 17414 34273 51353 05871 16472 94812 91531=

log 10π 0.49714 98726 94133 85435 12682 88290 89887 36516 78324 38044=

og 10 2π 0.39908 99341 79057 52478 25035 91507 69595 02099 34102 92128=

e 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69996=

1 e⁄ 0.36787 94411 71442 32159 55237 70161 46086 74458 11131 03177=

e2 7.38905 60989 30650 22723 04274 60575 00781 31803 15570 55185=

M log 10e 0.43429 44819 03251 82765 11289 18916 60508 22943 97005 80367= =

1 M⁄ log e10 2.30258 50929 94045 68401 79914 54684 36420 76011 01488 62877= =

log 10M 9.63778 43113 00536 78912 29674 98645 – 10=

2 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37695=

23 1.25992 10498 94873 16476 72106 07278 22835 05702 51464 70151=

log e2 0.69314 71805 59945 30941 72321 21458 17656 80755 00134 36026=

og 102 0.30102 99956 63981 19521 37388 94724 49302 67881 89881 46211=

3 1.73205 08075 68877 29352 74463 41505 87236 69428 05253 81039=

33 1.44224 95703 07408 38232 16383 10780 10958 83918 69253 49935=

log e3 1.09861 22886 68109 69139 52452 36922 52570 46474 90557 82275=

og 103 0.47712 12547 19662 43729 50279 03255 11530 92001 28864 19070=
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Symbols and Terminology for Physical  
and Chemical Quantities

Elementary Algebra and Geometry

Fundamental Properties (Real Numbers)

Commutative Law for Addition

Associative Law for Addition

Name Symbol Definition SI unit

Classical Mechanics
Mass m kg
Reduced mass µ µ = m1m2/(m1 + m2) kg
Density, mass density ρ ρ = m/V kg m–3

Relative density d d = ρ/ρθ 1
Surface density ρA, ρS ρA = m/A kg m–2

Specific volume v v = V/m = 1/ρ m3 kg–1

Momentum p p = mv kg m s–1

Angular momentum, action L L = r × p J s
Moment of inertia I, J l = Σ miri

2 kg m2

Force F F = dp/dt = ma N
Torque, moment of a force T, (M) T = r × F N m
Energy E J
Potential energy Ep, V, Φ Ep = – ∫ F ⋅ ds J
Kinetic energy Ek, T, K Ek = (1/2)mv2 J
Work W, w W = ∫ F ⋅ ds J
Hamilton function H H (q, p) J

= T(q, p) + V(q)

Lagrange function L L (q, ·q) J

= T(q, ·q) – V(q)
Pressure p, P p = F/A Pa, N m–2

Surface tension γ, σ γ = dW/dA N m–1, J m–2

Weight G, (W, P) G = mg N
Gravitational constant G F = Gm1m2/r2 N m2 kg–2

Normal stress σ σ = F/A Pa
Shear stress τ τ = F/A Pa
Linear strain, relative elongation ε, e ε = ∆l/l l
Modulus of elasticity, Young’s 

modulus
E E = σ/ε Pa

Shear strain γ γ = ∆x/d l
Shear modulus G G = τ/γ Pa
Volume strain, bulk strain θ θ = ∆V/V0 1
Bulk modulus K K = –V0 (dp/dV) Pa
Compression modulus η, µ τx,z = η(dvx/dz) Pa s
Viscosity, dynamic viscosity, fluidity φ φ = 1/η m kg–1 s
Kinematic viscosity ν ν = η/ρ m2 s–1

Friction coefficient µ, ( f  ) Ffrict = µFnorm l
Power P P = dW/dt W
Sound energy flux P, Pa P = dE/dt W
Acoustic factors

 Reflection factor ρ ρ = Pr /P0 1
 Acoustic absorption factor αa, (α) αa = 1 – ρ 1
 Transmission factor τ τ = Ptr/P0 1
 Dissipation factor δ δ = αa – τ 1

a b+ b a+=

a b+( ) c+ a b c+( )+=
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Identity Law for Addition

Inverse Law for Addition

Associative Law for Multiplication

Inverse Law for Multiplication

Identity Law for Multiplication

Commutative Law for Multiplication

Distributive Law

DIVISION BY ZERO IS NOT DEFINED

Exponents

For integers m and n

Fractional Exponents

where a1/q is the positive qth root of a if a > 0 and the negative qth root of a if a is negative and q is odd. 
Accordingly, the five rules of exponents given above (for integers) are also valid if m and n are fractions, 
provided a and b are positive.

Irrational Exponents

If an exponent is irrational, e.g., , the quantity, such as , is the limit of the sequence, a1.4, a1.41, a1.414, K .

Operations with Zero

Logarithms

If x, y, and b are positive and b ≠ 1

a 0+ 0 a+=

a a–( )+ a–( ) a+ 0= =

a bc( ) ab( )c=

a 1
a
-- 

  1
a
-- 

  a 1 a 0≠,= =

a( ) 1( ) 1( ) a( ) a= =

ab ba=

a b c+( ) ab ac+=

anam an m+=

an am⁄ an m–=

an( )m
anm=

ab( )m ambm=

a b⁄( )m am bm⁄=

ap q⁄ a1 q⁄( )p
=

2 a 2

0m 0 a0; 1= =

logb xy( ) logb x logb y+=

logb x y⁄( ) logb x logb y–=

logbx p p logb x=

logb 1 x⁄( ) logb x–=

logb b 1=

logb 1 0         Note: b b
xlog

x= =
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Change of Base (a ≠ 1)

Factorials

The factorial of a positive integer n is the product of all the positive integers less than or equal to the 
integer n and is denoted n!. Thus,

Factorial 0 is defined: 0! = 1.

Stirling’s Approximation

Binomial Theorem

For positive integer n

Factors and Expansion

Progression

An arithmetic progression is a sequence in which the difference between any term and the preceding term 
is a constant (d ):

If the last term is denoted l [= a + (n – 1) d ], then the sum is

A geometric progression is a sequence in which the ratio of any term to the preceding term is a constant r. 
Thus, for n terms

logb x loga x  logb a=

n! 1 2 3 … n⋅ ⋅ ⋅ ⋅=

n e⁄( )n 2πn
n ∞→
lim n!=

x y+( )n xn nxn 1– y n n 1–( )
2!

--------------------xn 2– y2 n n 1–( ) n 2–( )
3!

-------------------------------------xn 3– y3
L nxyn 1– yn+ + + + + +=

a b+( )2 a2 2ab b2+ +=

a b–( )2 a2 2ab– b2+=

a b+( )3 a3 3a2b 3ab2 b3+ + +=

a b–( )3 a3 3a2b– 3ab2 b3–+=

a2 b2–( ) a b–( ) a b+( )=

a3 b3–( ) a b–( ) a2 ab b2+ +( )=

a3 b3+( ) a b+( ) a2 ab– b2+( )=

a a d a 2d K a n 1–( )d+, ,+,+,

s n
2
--- a l+( )=

a ar ar2
K arn 1–, ,,,
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the sum is

Complex Numbers

A complex number is an ordered pair of real numbers (a, b).

Equality: (a, b) = (c, d ) if and only if a = c and b = d
Addition: (a, b) + (c, d ) = (a + c, b + d )
Multiplication: (a, b)(c, d ) = (ac – bd, ad + bc)

The first element (a, b) is called the real part; the second is the imaginary part. An alternate notation 
for (a, b) is a + bi, where i2 = (–1, 0), and i = (0, 1) or 0 + 1i is written for this complex number as a 
convenience. With this understanding, i behaves as a number, i.e., (2 – 3i)(4 + i) = 8 – 12i + 2i – 3i2 = 
11 – 10i. The conjugate of a + bi is a – bi and the product of a complex number and its conjugate is a2 + 
b2. Thus, quotients are computed by multiplying numerator and denominator by the conjugate of the 
denominator, as illustrated below:

Polar Form

The complex number x + iy may be represented by a plane vector with components x and y

(see Figure 1). Then, given two complex numbers z1 = r1(cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2), 
the product and quotient are

FIGURE 1   Polar form of complex number.

S
a arn–
1 r–

----------------=

2 3i+
4 2i+
--------------

4 2i–( ) 2 3i+( )
4 2i–( ) 4 2i+( )

--------------------------------------
14 8i+

20
-----------------

7 4i+
10

--------------= = =

x iy+ r θ i θsin+cos( )=

Product: z1z2 r1r2 θ1 θ2+( ) i θ1 θ2+( )sin+cos[ ]=

Quotient: z1 z2⁄ r1 r2⁄( ) θ1 θ2–( ) i θ1 θ2–( )sin+cos[ ]=

Powers: zn r θ i θsin+cos( )[ ]n rn nθ i nθsin+cos[ ]= =

Roots: z1 n⁄ r θ i θsin+cos( )[ ] 1 n⁄=

 r1 n⁄ θ k.360+
n

---------------------- i
θ k.360+

n
----------------------sin+cos ,      k 0 1 2 K n, 1–, , ,= =

Y

X
0

r
P(x, y)

q
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Permutations

A permutation is an ordered arrangement (sequence) of all or part of a set of objects. The number of 
permutations of n objects taken r at a time is

A permutation of positive integers is “even” or “odd” if the total number of inversions is an even 
integer or an odd integer, respectively. Inversions are counted relative to each integer j in the permutation 
by counting the number of integers that follow j and are less than j. These are summed to give the total 
number of inversions. For example, the permutation 4132 has four inversions: three relative to 4 and 
one relative to 3. This permutation is therefore even.

Combinations

A combination is a selection of one or more objects from among a set of objects regardless of order. The 
number of combinations of n different objects taken r at a time is

Algebraic Equations

Quadratic

If ax  2 + bx + c = 0, and a ≠ 0, then roots are

Cubic

To solve x  3 + bx  2 + cx + d = 0, let x = y – b/3. Then the reduced cubic is obtained:

where p = c – (1/3)b2 and q = d – (1/3)bc + (2/27)b3. Solutions of the original cubic are then in terms 
of the reduced cubic roots y1, y2, y3:

The three roots of the reduced cubic are

where

p n r,( ) n n 1–( ) n 2–( )… n r– 1+( )=

 
n!

n r–( )!
------------------=

C n r,( ) P n r,( )
r!

----------------
n!

r! n r–( )!
----------------------= =

x
b– b2 4ac–±

2a
-------------------------------------=

y3 py q+ + 0=

x1 y1 1 3⁄( )b                 x2– y2 1 3⁄( )b                x3– y3 1 3⁄( )b–= = =

y1 A( )1 3⁄ B( )1 3⁄+=

y2 W A( )1 3⁄ W2 B( )1 3⁄+=

y3 W2 A( )1 3⁄ W B( )1 3⁄+=

A 1
2
--q– 1 27⁄( )p3 1

4
--q2++=
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When (1/27)p3 + (1/4)q2 is negative, A is complex; in this case A should be expressed in trigono-
metric form: A = r (cos θ + i sin θ), where θ is a first- or second-quadrant angle, as q is negative or 
positive. The three roots of the reduced cubic are

Geometry
Figures 2 to 12 are a collection of common geometric figures. Area (A), volume (V  ), and other measurable 
features are indicated.

FIGURE 2  Rectangle. A = bh. FIGURE 3  Parallelogram. A = bh.  

FIGURE 4  Triangle. A = 1/2 bh. FIGURE 5  Trapezoid. A = 1/2 (a + b)h.

FIGURE 6   Circle. A = πR2; 
circumference = 2πR; arc 
length S = Rθ (θ in radians).

FIGURE 7  Sector of circle. 
Asector = 1/2  R2 θ; Asegment = 
1/2  R2 (θ – sin θ).

FIGURE 8  Regular polygon of n

sides. A = n/4 b2 ctn π/n; R = b/2 
csc π/n.

B 1
2
--q– 1 27⁄( )p3 1

4
--q2+–=

W 1– i 3+
2

-----------------------     W 2, 1– i 3–
2

----------------------= =

y1 2 r( )1 3⁄ θ 3⁄( )cos=

y2 2 r( )1 3⁄ θ
3
--- 120°+ 

 cos=

y3 2 r( )1 3⁄ θ
3
--- 240°+ 

 cos=

b

h h

b

h

b

h

b

a

R S

θ R

θ

θ

R b
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Determinants, Matrices, and Linear Systems of Equations

Determinants

Definition. The square array (matrix) A, with n rows and n columns, has associated with it the determinant

a number equal to

where i, j, k, K, l is a permutation of the n integers 1, 2, 3, K, n in some order. The sign is plus if the 
permutation is even and is minus if the permutation is odd. The 2 × 2 determinant

FIGURE 9  Right circular cylinder. V

= π R2h; lateral surface area = 2π Rh.  
FIGURE 10  Cylinder (or prism) 
with parallel bases. V = A/t.

FIGURE 11  Right circular cone. V = 1/3 πR2h; 

lateral surface area = πRl = πR  
FIGURE 12  Sphere. V = 4/3 πR3; 

surface area = 4πR2.

R

h
h

A

hI

R

R

R2 h2+ .

det A

a11   a12   L   a1n

a21   a22   L   a2n

L   L   L   L

an1   an2   L   ann

=

±( )a1ia2 ja3k K anl∑
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has the value a11a22 – a12a21 since the permutation (1, 2) is even and (2, 1) is odd. For 3 × 3 determinants, 
permutations are as follows:

Thus,

A determinant of order n is seen to be the sum of n! signed products.

Evaluation by Cofactors

Each element aij has a determinant of order (n – 1) called a minor (Mij), obtained by suppressing all 
elements in row i and column j. For example, the minor of element a22 in the 3 × 3 determinant above is 

The cofactor of element aij, denoted Aij, is defined as ± Mij, where the sign is determined from i and j:

The value of the n × n determinant equals the sum of products of elements of any row (or column) 
and their respective cofactors. Thus, for the 3 × 3 determinant

or

etc.

Properties of Determinants

a. If the corresponding columns and rows of A are interchanged, det A is unchanged.
b. If any two rows (or columns) are interchanged, the sign of det A changes.

1, 2, 3 even
1, 3, 2 odd
2, 1, 3 odd
2, 3, 1 even
3, 1, 2 even
3, 2, 1 odd

a11    a12

a21   a22

a11    a12    a13

a21   a22    a23

a31    a32 a33

a+ 11 . a22 . a33

a– 11
. a23 . a32

a12– . a21 . a33

a12+ . a23 . a31

a13+ . a21 . a32

a13– . a22 . a31 
 
 
 
 
 
 
 
 
 
 

=

a11    a13

a31   a33

Aij 1–( )i j+ Mij=

det A a11A11 a12A12 a13A13 first row( )+ +=

               a11A11 a21A21 a31A31 first column( )+ +=



© 2003 by CRC Press LLC

c. If any two rows (or columns) are identical, det A = 0.
d. If A is triangular (all elements above the main diagonal equal to zero), A = a11 ⋅ a22 ⋅ K ⋅ ann:

e. If to each element of a row or column there is added C times the corresponding element in another 
row (or column), the value of the determinant is unchanged.

Matrices

Definition. A matrix is a rectangular array of numbers and is represented by a symbol A or [aij]:

The numbers aij are termed elements of the matrix; subscripts i and j identify the element as the number 
in row i and column j. The order of the matrix is m × n (“m by n”). When m = n, the matrix is square 
and is said to be of order n. For a square matrix of order n, the elements a11, a22, K, ann constitute the 
main diagonal.

Operations

Addition. Matrices A and B of the same order may be added by adding corresponding elements, i.e.,  
A + B = [(aij + bij)].

Scalar multiplication. If A = [aij] and c is a constant (scalar), then cA = [caij], that is, every element 
of A is multiplied by c. In particular, (–1)A = – A = [– aij], and A + (– A ) = 0, a matrix with all 
elements equal to zero.

Multiplication of matrices. Matrices A and B may be multiplied only when they are conformable, 
which means that the number of columns of A equals the number of rows of B. Thus, if A is m ×
k and B is k × n, then the product C = AB exists as an m × n matrix with elements cij equal to the 
sum of products of elements in row i of A and corresponding elements of column j of B:

For example, if

then element c21 is the sum of products a21b11 + a22b21 + K + a2kbk1.

a11    0   0   L   0

a21    a22   0   L   0

L  L  L   L L

an1   an2   an3   L   ann

 A

a11   a12   L   a1n

a21   a22   L   a2n

L   L   L   L

am1   am2   L   amn

aij[ ]= =

cij ailblj

l 1=

k

∑=

a11   a12  L  a1k

a21   a22  L  a2k

L   L  L  L

am1   L  L  amk

b11   b12  L  b1n

b21   b22  L  b2n

L   L   L  L

bk1    bk2   L  bkn

⋅

c11   c12  L  c1n

c21   c22  L  c2n

L   L  L  

cm1   cm2  L  cmn

=
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Properties

Transpose
If A is an n × m matrix, the matrix of order m × n obtained by interchanging the rows and columns of 
A is called the transpose and is denoted AT. The following are properties of A, B, and their respective 
transposes:

A symmetric matrix is a square matrix A with the property A = AT.

Identity Matrix

A square matrix in which each element of the main diagonal is the same constant a and all other elements 
are zero is called a scalar matrix.

When a scalar matrix is multiplied by a conformable second matrix A, the product is aA, which is the 
same as multiplying A by a scalar a. A scalar matrix with diagonal elements 1 is called the identity, or unit,
matrix and is denoted I. Thus, for any nth-order matrix A, the identity matrix of order n has the property

Adjoint
If A is an n-order square matrix and Aij is the cofactor of element aij, the transpose of [Aij] is called the 
adjoint of A:

Inverse Matrix
Given a square matrix A of order n, if there exists a matrix B such that AB = BA = I, then B is called the
inverse of A. The inverse is denoted A–1. A necessary and sufficient condition that the square matrix A 
have an inverse is det A ≠ 0. Such a matrix is called nonsingular; its inverse is unique and is given by 

A B+ B A+=

 A B C+( )+ A B+( ) C+=

c1 c2+( )A c1A c2A+=

 c A B+( ) cA cB+=

c1 c2A( ) c1c2( )A=

AB( ) C( ) A BC( )=

A B+( ) C( ) AC BC+=

AB BA in general( )≠

AT( )T
A=

A B+( )T AT BT+=

cA( )T cAT=

AB( )T BTAT=

a   0   0   L   0

0   a   0   L   0

0   0   a   L   0

L   L   L   L

0   0   0   L   a

AI IA A= =

adj A Aij[ ] T=
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Thus, to form the inverse of the nonsingular matrix A, form the adjoint of A and divide each element 
of the adjoint by det A. For example,

Therefore,

Systems of Linear Equations

Given the system

a unique solution exists if det A ≠ 0, where A is the n × n matrix of coefficients [aij].

Solution by Determinants (Cramer’s Rule)

where Ak is the matrix obtained from A by replacing the kth column of A by the column of bs.

A 1– adj A
det A
--------------=

1 0 2

3 1– 1

4 5 6

 has matrix of cofactors  
11– 14– 19

10 2– 5–

2 5 1–

   adjoint =
11– 10 2

14– 2– 5

19 5– 1–

and determinant 27=

A 1–

11–
27

--------
10
27
-----

2
27
-----

14–
27

--------
2–

27
------

5
27
-----

19
27
-----

5–
27
------

1–
27
------

=

a11x1 a12x2 L a1nxn b1=+ + +

a21x1 a22x2 L a2nxn b2=+ + +

M M M M M
an1x1 an2x2 L annxn bn=+ + +

x1

b1 a12 L a1n

b2 a22

M M M

bn an2 ann

 det A÷=

x2

a11 b1 a13 L a1n

a21 b2 L L

M M    

an1 bn an3 ann

det A÷=

M

xk

det Ak

det A
----------------=
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Matrix Solution

The linear system may be written in matrix form AX = B, where A is the matrix of coefficients [aij] and 
X and B are

If a unique solution exists, det A ≠ 0; hence, A–1 exists and

Trigonometry

Triangles

In any triangle (in a plane) with sides a, b, and c and corresponding opposite angles A, B, and C,

(Law of Sines)

(Law of Cosines)

(Law of Tangents)

If the vertices have coordinates (x1, y1), (x2, y2), and (x3, y3), the area is the absolute value of the 
expression

 

X

x1

x2

M

xn

      B

b1

b2

M

bn

= =

X A 1– B=

a
Asin

-----------
b

Bsin
-----------

c
Csin

-----------= =

a2 b2 c2 2cb  cos A–+=

a b+
a b–
------------

1
2
--- A B+( )tan

1
2
--- A B–( )tan

--------------------------------=

1
2
--Asin

s b–( ) s c–( )
bc

------------------------------= where s 1
2
-- a b c+ +( )=

1
2
--Acos

s s a–( )
bc

-----------------=

1
2
--Atan

s b–( ) s c–( )
s s a–( )

------------------------------  =

Area 1
2
--bc  Asin=

s s a–( ) s b–( ) s c–( ) =

1
2
--

x1    y1    1

x2    y2    1

x3    y3    1
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Trigonometric Functions of an Angle

With reference to Figure 13, P(x, y) is a point in either one of the four quadrants and A is an angle whose 
initial side is coincident with the positive x-axis and whose terminal side contains the point P(x, y). The 
distance from the origin P(x, y) is denoted by r and is positive. The trigonometric functions of the angle 
A are defined as

z-Transform and the Laplace Transform

When F(t), a continuous function of time, is sampled at regular intervals of period T, the usual Laplace 
transform techniques are modified. The diagramatic form of a simple sampler, together with its associated 
input–output waveforms, is shown in Figure 14.

Defining the set of impulse functions δτ (t) by

the input–output relationship of the sampler becomes

While for a given F(t) and T the F* (t) is unique, the converse is not true.

FIGURE 13  The trigonometric point. Angle A is taken to be positive when the rotation is counterclockwise and 
negative when the rotation is clockwise. The plane is divided into quadrants as shown.

Y

X
A

0

P(x, y)

r

(I)(II)

(III) (IV)

 Asin e  A          sin y r⁄= =

 Acos cosine A       x r⁄= =

 Atan tangent A  y x⁄= =

ctn A cotangent A x y⁄= =

 sec A secant A r x⁄= =

 csc A cosecant A r y⁄= =

δτ t( ) δ t nT–( )
n 0=

∞

∑≡

F* t( ) F t( ) δτ t( )⋅=

F nT( ) δ t nT–( )⋅
n 0=

∞

∑=
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For function U(t), the output of the ideal sampler U*(t) is a set of values U(kT ), k = 0, 1, 2, …, that is,

The Laplace transform of the output is

FIGURE 14   

Sampler

Period T

F*(t)F (t)

F*(t)

tt

the sampling frequency1
T ≡Fs

U* t( ) U t( ) δ t kT–( )
k 0=

∞

∑=

L + U* t( ){ } e st– U* t( ) td
0

∞

∫ e st– U t( )δ t kT–( )
k 0=

∞

∑  td
0

∞

∫= =

e skT– U kT( )
k 0=

∞

∑=

 Atan
1

ctn A
--------------

 Asin
 Acos

--------------= =

 Acsc
1
 Asin

-------------=

 Asec
1

 cos A
--------------=

ctn A
1

 tan A
--------------

 cos A
 sin A

--------------= =

sin2 A cos2 A+ 1=

1 tan2 A+ sec2A=

1 ctn2 A+ csc2A=

A B±( )sin  A  B  A cos±  Bsincossin=

A B±( )cos  Acos   B  Asin  +−  Bsincos=

A B±( )tan
 Atan  Btan±

1  A  Btantan+−
---------------------------------------=
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2Asin 2  A  Acossin=

3Asin 3  A 4sin3 A–sin=

 nAsin 2 n 1–( )A  A n 2–( )Asin–cossin=

2Acos 2cos2A 1– 1 2sin2A–= =

3Acos 4cos3A  3  Acos–=

 nAcos 2 n 1–( )A  A n 2–( )Acos–coscos=

 A  Bsin+sin 2 1
2
-- A B+( ) 1

2
-- A B–( )cossin=

 A  Bsin–sin 2
1
2
--cos A B+( ) 1

2
--sin A B–( )=

 A  Bcos+cos 2
1
2
--cos A B+( ) 1

2
--cos A B–( )=

 A  Bcos–cos 2–
1
2
--sin A B+( ) 1

2
--sin A B–( )=

 A  Btan±tan
A B±( )sin

 A  Bcoscos
------------------------------=

ctn A ctn B±  A B±( )sin
 sin A  sin B

----------------------------±=

 A Bsinsin 1
2
-- A B–( )cos   1

2
--– A B+( )cos=

 cos A Bcos 1
2
-- A B–( )cos 1

2
-- A B+( )cos+=

 A Bcossin 1
2
-- A B+( )sin 1

2
-- A B–( )sin+=

A
2
---sin

1  Acos–
2

-----------------------±=

A
2
---cos

1  Acos+
2

-----------------------±=

A
2
---tan

1  Acos–
 Asin

-----------------------
 Asin

1  Acos+
-----------------------

1  Acos–
1  Acos+
-----------------------±= = =

sin2 A 1
2
-- 1 2Acos–( )=

cos2 A 1
2
-- 1 2Acos+( )=
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Inverse Trigonometric Functions

The inverse trigonometric functions are multiple valued, and this should be taken into account in the 
use of the following formulas.

sin3 A 1
4
-- 3  A 3Asin–sin( )=

cos3 A 1
4
-- 3A 3 Acos+cos( )=

ixsin 1
2
--i ex e x––( ) i  xsinh= =

icos x 1
2
-- ex e x–+( )  xcosh= =

ixtan
i ex e x––( )

ex e x–+
----------------------- i  xtanh= =

ex iy+ ex  y i ysin+cos( )=

 x i  xsin±cos( )n  nx i  nxsin±cos=

sin 1– x 1– 1 x2–cos=

tan 1– x

1 x2–
----------------- ctn 1– 1 x2–

x
-----------------= =

sec 1– 1

1 x2–
----------------- csc 1– 1

x
--= =

s– in 1– x–( )=

1– xcos sin 1– 1 x2–=

tan 1– 1 x2–
x

----------------- ctn 1– x

1 x2–
-----------------= =

sec 1– 1
x
-- csc 1– 1

1 x2–
-----------------= =

π 1– x–( )cos–=

tan 1– x ctn 1– 1
x
--=

sin 1– x

1 x2+
------------------

1– 1

1 x2+
------------------cos= =

sec 1– 1 x2+ csc 1– 1 x2+
x

------------------= =

t– an 1– x–( )=
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Analytic Geometry

Rectangular Coordinates

The points in a plane may be placed in one-to-one correspondence with pairs of real numbers. A common 
method is to use perpendicular lines that are horizontal and vertical and intersect at a point called the
origin. These two lines constitute the coordinate axes; the horizontal line is the x-axis and the vertical 
line is the y-axis. The positive direction of the x-axis is to the right, whereas the positive direction of the 
y-axis is up. If P is a point in the plane, one may draw lines through it that are perpendicular to the x- 
and y-axes (such as the broken lines of Figure 15). The lines intersect the x-axis at a point with coordinate 
x1 and the y-axis at a point with coordinate y1. We call x1 the x-coordinate, or abscissa, and y1 is termed 
the y-coordinate, or ordinate, of the point P. Thus, point P is associated with the pair of real numbers 
(x1, y1) and is denoted P(x1, y1). The coordinate axes divide the plane into quadrants I, II, III, and IV.

Distance between Two Points; Slope

The distance d between the two points P1(x1, y1) and P2(x2, y2) is

In the special case when P1 and P2 are both on one of the coordinate axes, for instance, the x-axis,

or on the y-axis,

The midpoint of the line segment P1P2 is

FIGURE 15  Rectangular coordinates.

y

x

IV

III

III

0

y1

x1

P(x1, y1)

d x2 x1–( )2 y2 y1–( )2+=

d x2 x1–( )2 x2 x1–= =

d y2 y1–( )2 y2 y1–= =

x1 x2+
2

----------------
y1 y2+

2
---------------, 
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The slope of the line segment P1P2, provided it is not vertical, is denoted by m and is given by

The slope is related to the angle of inclination α (Figure 16) by

Two lines (or line segments) with slopes m1 and m2 are perpendicular if

and are parallel if m1 = m2.

Equations of Straight Lines

A vertical line has an equation of the form

where (c, 0) is its intersection with the x-axis. A line of slope m through point (x1, y1) is given by

Thus, a horizontal line (slope = 0) through point (x1, y1) is given by

A nonvertical line through the two points P1(x1, y1) and P2(x2, y2) is given by either

or

FIGURE 16  The angle of inclination α is the smallest angle measured counterclockwise from the positive x-axis to 
the line that contains P1P2.

y

x

P1

P2

α

m
y2 y1–
x2 x1–
---------------=

m  αtan=

m1 1 m2⁄–=

x c=

y y1– m x x1–( )=

y y1=

y y1–
y2 y1–
x2 x1–
--------------- 

  x x1–( )=
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A line with x-intercept a and y-intercept b is given by

The general equation of a line is

The normal form of the straight-line equation is

where p is the distance along the normal from the origin and θ is the angle that the normal makes with 
the x-axis (Figure 17).

The general equation of the line Ax + By + C = 0 may be written in normal form by dividing by 

, where the plus sign is used when C is negative and the minus sign is used when C is positive:

so that

and

Distance from a Point to a Line

The perpendicular distance from a point P(x1, y1) to the line Ax + By + C = 0 is given by

FIGURE 17  Construction for normal form of straight-line equation.

y

x
0

p
θ

y y2–
y2 y1–
x2 x1–
--------------- 

  x x2–( )=

x
a
--

y
b
--+ 1      a 0  b 0≠,≠( )=

Ax By C+ + 0=

x θ + y θsincos p=

A2 B2+±

Ax By C+ +

A2 B2+±
------------------------------ 0=

θcos A

A2 B2+±
-------------------------           θsin, B

A2 B2+±
-------------------------= =

p
C

A2 B2+
----------------------=

d
Ax1 By1 C+ +

A2 B2+±
----------------------------------=
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Circle

The general equation of a circle of radius r and center at P(x1, y1) is

Parabola

A parabola is the set of all points (x, y) in the plane that are equidistant from a given line called the 
directrix and a given point called the focus. The parabola is symmetric about a line that contains the 
focus and is perpendicular to the directrix. The line of symmetry intersects the parabola at its vertex
(Figure 18). The eccentricity e = 1.

The distance between the focus and the vertex, or vertex and directrix, is denoted by p (> 0) and leads 
to one of the following equations of a parabola with vertex at the origin (Figures 19 and 20):

FIGURE 18  Parabola with vertex at (h, k). F identifies the focus.

FIGURE 19  Parabolas with y-axis as the axis of symmetry and vertex at the origin. (Left) ; (right) 

xo

F

y

x = h

(h,k)

F

0

0
F

y = p

y = −p

x

y

P(x,y)

y x2

4p
------= y x2

4p
------– .=

x x1–( )2 y y1–( )2+ r2=

y x2

4p
------ (opens upward)=

y  x
2

4p
------ (opens downward)–=

x y2

4p
------ (opens to right)=

x  y
2

4p
------ (opens to left)–=
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For each of the four orientations shown in Figures 19 and 20, the corresponding parabola with vertex 
(h, k) is obtained by replacing x by x – h and y by y – k. Thus, the parabola in Figure 21 has the equation

Ellipse

An ellipse is the set of all points in the plane such that the sum of their distances from two fixed points, 
called foci, is a given constant 2a. The distance between the foci is denoted 2c; the length of the major 
axis is 2a, whereas the length of the minor axis is 2b (Figure 22) and

The eccentricity of an ellipse, e, is < 1. An ellipse with center at point (h, k) and major axis parallel to 
the x-axis (Figure 23) is given by the equation

FIGURE 20  Parabolas with x-axis as the axis of symmetry and vertex at the origin. (Left) ; (right) 

FIGURE 21  Parabola with vertex at (h, k) and axis parallel to the x-axis.
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An ellipse with center at (h, k) and major axis parallel to the y-axis is given by the equation (Figure 24)

Hyperbola (e > 1)

A hyperbola is the set of all points in the plane such that the difference of its distances from two fixed 
points (foci) is a given positive constant denoted 2a. The distance between the two foci is 2c and that 
between the two vertices is 2a. The quantity b is defined by the equation

and is illustrated in Figure 25, which shows the construction of a hyperbola given by the equation

When the focal axis is parallel to the y-axis, the equation of the hyperbola with center (h, k) (Figures 26 
and 27) is

FIGURE 22  Ellipse. Since point P is equidistant from foci F1 and F2, the segments F1P and F2P = a; hence, 

FIGURE 23  Ellipse with major axis parallel to the x-axis. F1 and F2 are the foci, each a distance c from center (h, k).
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If the focal axis is parallel to the x-axis and center (h, k), then

Change of Axes

A change in the position of the coordinate axes will generally change the coordinates of the points in the 
plane. The equation of a particular curve will also generally change.

Translation

When the new axes remain parallel to the original, the transformation is called a translation (Figure 28). 
The new axes, denoted x′and y′, have origin 0′ at (h, k) with reference to the x- and y-axes.

FIGURE 24  Ellipse with major axis parallel to the y-axis. Each focus is a distance c from center (h, k).

FIGURE 25  Hyperbola. V1, V2 = vertices; F1, F2 = foci. A circle at center 0 with radius c contains the vertices and 

illustrates the relation among a, b, and c. Asymptotes have slopes b/a and –b/a for the orientation shown.
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Series

Bernoulli and Euler Numbers

A set of numbers, B1, B3, K, B2n – 1 (Bernoulli numbers) and B2, B4, K, B2n (Euler numbers), appears in 
the series expansions of many functions. A partial listing follows; these are computed from the following 
equations:

FIGURE 26   Hyperbola with center at (h, k).  slopes of asymptotes ± b/a.

FIGURE 27   Hyperbola with center at (h, k).  slopes of asymptotes ± a/b.
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and

Series of Functions

In the following, the interval of convergence is indicated; otherwise, it is all x. Logarithms are of base e. 
Bernoulli and Euler numbers (B2n – 1 and B2n) appear in certain expressions.

FIGURE 28   Translation of axes.
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Error Function

The following function, known as the error function, erf x, arises frequently in applications:

The integral cannot be represented in terms of a finite number of elementary functions; therefore, 
values of erf x have been compiled in tables. The following is the series for erf x.

There is a close relation between this function and the area under the standard normal curve (Table 1 
in the Tables of Probability and Statistics). For evaluation, it is convenient to use z instead of x; then erf 
z may be evaluated from the area F(z) given in Table 1 by use of the relation

Example

By interpolation from Table 1, F(0.707) = 0.260; thus, erf(0.5) = 0.520.

Series Expansion

The expression in parentheses following certain of the series indicates the region of convergence. If not 
otherwise indicated, it is to be understood that the series converges for all finite values of x.
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Reversion of Series

Let a series be represented by

to find the coefficients of the series

Taylor
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or

where

 0 < θ < 1

The above forms are known as Taylor’s series with the remainder term.

4. Taylor’s series for a function of two variables:

etc., and if  with the bar and subscripts means that after differentiation we 

are to replace x by a and y by b,

then
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Logarithmic

 

(a > 0, – a < x < + ∞)

(–1< x < 1)
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Differential Calculus

Notation

For the following equations, the symbols f (x), g (x), etc. represent functions of x. The value of a function 
f (x) at x = a is denoted f (a). For the function y = f (x), the derivative of y with respect to x is denoted 
by one of the following:

Higher derivatives are as follows:

and values of these at x = a are denoted f ″(a), f ″′ (a), etc. (see Table of Derivatives).

Slope of a Curve

The tangent line at a point P(x, y) of the curve y = f (x) has a slope f ′(x), provided that f  ′(x) exists at P. 
The slope at P is defined to be that of the tangent line at P. The tangent line at P(x1, y1) is given by

The normal line to the curve at P(x1, y1) has slope –1 /f ′(x1) and thus obeys the equation

(The slope of a vertical line is not defined.)

Angle of Intersection of Two Curves

Two curves, y = f1(x) and y = f2(x), that intersect at a point P(X, Y) where derivatives f  ′1(X), f  ′2(X) exist 
have an angle (α) of intersection given by

If tan α > 0, then α is the acute angle; if tan α < 0, then α is the obtuse angle.

Radius of Curvature

The radius of curvature R of the curve y = f(x) at point P(x, y) is

In polar coordinates (θ, r), the corresponding formula is

dy
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dx
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y y1– f ′ x1( ) x x1–( )=

y y1– 1– f ′ x1( )⁄[ ] x x1–( )=
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1 f ′2 X( ) f ′1 X( )⋅+
---------------------------------------------=tan

R
1 f ′ x( )[ ] 2+{ } 3 2⁄
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The curvature K is 1/R.

Relative Maxima and Minima

The function f has a relative maximum at x = a if f (a) ≥ f (a + c) for all values of c (positive or negative) 
that are sufficiently near zero. The function f has a relative minimum at x = b if f (b) ≤ f (b + c) for all 
values of c that are sufficiently close to zero. If the function f is defined on the closed interval x1 ≤ x ≤ x2

and has a relative maximum or minimum at x = a, where x1 < a < x2, and if the derivative f ′(x) exists 
at x = a, then f ′(a) = 0. It is noteworthy that a relative maximum or minimum may occur at a point 
where the derivative does not exist. Further, the derivative may vanish at a point that is neither a maximum 
nor a minimum for the function. Values of x for which f ′(x) = 0 are called “critical values.” To determine 
whether a critical value of x, say xc, is a relative maximum or minimum for the function at xc, one may 
use the second derivative test:

1. If f   ″(xc) is positive, f (xc) is a minimum.
2. If f   ″(xc) is negative, f (xc) is a maximum.
3. If f   ″(xc) is zero, no conclusion may be made.

The sign of the derivative as x advances through xc may also be used as a test. If f ′(x) changes from 
positive to zero to negative, then a maximum occurs at xc, whereas a change in f ′(x) from negative to 
zero to positive indicates a minimum. If f ′(x) does not change sign as x advances through xc, then the 
point is neither a maximum nor a minimum.

Points of Inflection of a Curve

The sign of the second derivative of f indicates whether the graph of y = f  (x) is concave upward or 
concave downward:

: concave upward

: concave downward

A point of the curve at which the direction of concavity changes is called a point of inflection 
(Figure 29). Such a point may occur where f ″(x) = 0 or where f ″(x) becomes infinite. More precisely, if 
the function y = f (x) and its first derivative y′ = f ′(x) are continuous in the interval a ≤ x ≤ b, and if y″ = 
f ″(x) exists in a < x < b, then the graph of y = f (x) for a < x < b is concave upward if f ″(x) is positive 
and concave downward if f ″(x) is negative.

Taylor’s Formula

If f is a function that is continuous on an interval that contains a and x, and if its first (n + 1) derivatives 
are continuous on this interval, then

where R is called the remainder. There are various common forms of the remainder:

R

r2 dr
dθ------ 

  2

+
3 2⁄

r2 2 dr
dθ------ 

  2

r d2r

dθ2
--------–+

---------------------------------------------=

f ″ x( ) 0>

f ″ x( ) 0<

f x( ) f a( ) f ′ a( ) x a–( ) f ″ a( )
2!

------------- x a–( )2 f ″′ a( )
3!

--------------- x a–( )3
L

f n( ) a( )
n!

--------------- x a–( )n R+ + + + + +=
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Lagrange’s Form

 

Cauchy’s Form

 

Integral Form

Indeterminant Forms

If f (x) and g(x) are continuous in an interval that includes x = a, and if f (a) = 0 and g(a) = 0, the limit 
limx → a (f (x)/g(x)) takes the form “0/0,” called an indeterminant form. L’Hôpital’s rule is

Similarly, it may be shown that if f (x) → ∞ and g(x) → ∞ as x → a, then 

(The above holds for x → ∞.) 

Examples

FIGURE 29   Point of inflection.

P

R f n 1+( ) β( ) x a–( )n 1+

n 1+( )!
------------------------  β  between a and x;⋅=

R f n 1+( ) β( ) x β–( )n x a–( )
n!

-----------------------------------  β  between a and x;⋅=

R x t–( )n

n!
-----------------f n 1+( ) t( ) td

a

x

∫=

 f x( )
g x( )
----------

x a→
lim   f ′ x( )

g ′ x( )
------------

x a→
lim=

  f x( )
g x( )
----------

x a→
lim  f ′ x( )

g ′ x( )
------------

x a→
lim=

xsin
x

-----------
x 0→
lim

xcos
1

------------
x 0→
lim 1= =

 x
2

ex
----

x ∞→
lim  2x

ex
-----

x ∞→
lim  2

ex
----

x ∞→
lim 0= = =
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Numerical Methods

a. Newton’s method for approximating roots of the equation f (x) = 0: A first estimate x1 of the root 
is made; then, provided that f ′(x1) ≠ 0, a better approximation is x2:

The process may be repeated to yield a third approximation x3 to the root:

provided f ′(x2) exists. The process may be repeated. (In certain rare cases, the process will not 
converge.)

b. Trapezoidal rule for areas (Figure 30): For the function y = f (x) defined on the interval (a, b) and 
positive there, take n equal subintervals of width ∆x = (b – a) / n. The area bounded by the curve 
between x = a and x = b  (or definite integral of f (x)) is approximately the sum of trapezoidal 
areas, or 

Estimation of the error (E) is possible if the second derivative can be obtained: 

where c is some number between a and b. 

Functions of Two Variables

For the function of two variables, denoted z = f (x, y), if y is held constant, say at y = y1, then the resulting 
function is a function of x only. Similarly, x may be held constant at x1, to give the resulting function of y.

FIGURE 30  Trapezoidal rule for area.

y

y0 yn

x
0 a b

∆x

x2 x1

f x1( )
f ′ x1( )
--------------–=

x3 x2

f x2( )
f ′ x2( )
--------------–=

A 1
2
-- y0 y1 y2 L yn 1–

1
2
-- yn+ + + + + 

  x∆( )∼

E b a–
12

-----------f ″ c( ) x∆( )2=
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The Gas Laws

A familiar example is afforded by the ideal gas law that relates the pressure p, the volume V, and the 
absolute temperature T of an ideal gas:

where n is the number of moles and R is the gas constant per mole, 8.31 (J · K–1 · mole–1). By rearrange-
ment, any one of the three variables may be expressed as a function of the other two. Further, either one 
of these two may be held constant. If T is held constant, then we get the form known as Boyle’s law: 

(Boyle’s law)

where we have denoted nRT by the constant k and, of course, V > 0. If the pressure remains constant, 
we have Charles’ law: 

(Charles’ law)

where the constant b denotes nR/p. Similarly, volume may be kept constant:

where now the constant, denoted a, is nR/V.

Partial Derivatives 

The physical example afforded by the ideal gas law permits clear interpretations of processes in which 
one of the variables is held constant. More generally, we may consider a function z = f (x, y) defined 
over some region of the x–y-plane in which we hold one of the two coordinates, say y, constant. If the 
resulting function of x is differentiable at a point (x, y), we denote this derivative by one of the notations

called the partial derivative with respect to x. Similarly, if x is held constant and the resulting function of 
y is differentiable, we get the partial derivative with respect to y, denoted by one of the following:

Example

 

Integral Calculus

Indefinite Integral

If F  (x) is differentiable for all values of x in the interval (a, b) and satisfies the equation dy /dx = f (x), 
then F  (x) is an integral of f (x) with respect to x. The notation is F (x) = ∫ f (x) dx or, in differential form, 
dF  (x) = f (x) dx. 

For any function F (x) that is an integral of f (x), it follows that F (x) + C is also an integral. We thus write 

pV nRT=

p kV 1–=

V bT=

p aT=

fx       δf dx,⁄        δz dx⁄,

fy,     δf dy⁄      δz dy⁄,

Given  z x4y3 y x 4y, then+sin–=

δz dx⁄ 4 xy( )3 y xcos–=

δz dy⁄ 3x4y2 x 4+sin–=

f x( ) xd∫ F x( ) C+=
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Definite Integral 

Let f (x) be defined on the interval [a, b] which is partitioned by points x1, x2, K, xj, K, xn – 1 between a = 
x0 and b = xn. The j th interval has length ∆xj = xj – xj – 1, which may vary with j. The sum 
where υj is arbitrarily chosen in the jth subinterval, depends on the numbers x0 , K, xn and the choice 
of the υ as well as f  ; however, if such sums approach a common value as all ∆x approach zero, then this 
value is the definite integral of f over the interval (a, b) and is denoted . The fundamental theorem 
of integral calculus states that 

 

where F is any continuous indefinite integral of f in the interval (a, b).

Properties 

 

, if c is a constant

Common Applications of the Definite Integral 

Area (Rectangular Coordinates)

Given the function y = f (x) such that y > 0 for all x between a and b, the area bounded by the curve y =
f (x), the x-axis, and the vertical lines x = a and x = b is 

Length of Arc (Rectangular Coordinates)

Given the smooth curve f (x, y) = 0 from point (x1, y1) to point (x2, y2), the length between these points is 

Mean Value of a Function 

The mean value of a function f (x) continuous on [a, b] is 

Σj 1=
n f υ j( )∆xj ,

f x( ) xd
a

b∫

f x( ) xd
a

b

∫ F b( ) F a( )–=

f1 x( ) f2 x( ) L fj x( )+ + +[ ] xd
a

b

∫ f1 x( ) x f2 x( ) x L fj x( ) xd
a

b

∫+ +d
a

b

∫+d
a

b

∫=

cf x( ) xd
a

b

∫ c f x( ) xd
a

b

∫=

f x( ) xd
a

b

∫ f x( ) xd
b

a

∫–=

f x( ) xd
a

b

∫ f x( ) xd
a

c

∫ f x( ) xd
c

b

∫+=

A f x( ) xd
a

b

∫=

L 1 yd xd⁄( )2+ xd
x1

x2

∫=

L 1 xd yd⁄( )2+ yd
y1

y2

∫=

1
b a–( )

---------------- f x( ) xd
a

b

∫
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Area (Polar Coordinates)

Given the curve r = f (θ), continuous and non-negative for θ1 ≤ θ ≤ θ2, the area enclosed by this curve 
and the radial lines θ = θ1 and θ = θ2 is given by 

Length of Arc (Polar Coordinates) 

Given the curve r = f (θ) with continuous derivative f ′(θ) on θ1 ≤ θ ≤ θ2, the length of arc from θ = θ1 to 
θ = θ2 is 

Volume of Revolution 

Given a function y = f (x), continuous and non-negative on the interval (a, b), when the region bounded 
by f (x) between a and b is revolved about the x-axis, the volume of revolution is 

Surface Area of Revolution 
(Revolution about the x-axis, between a and b)

If the portion of the curve y = f  (x) between x = a and x = b is revolved about the x-axis, the area A of 
the surface generated is given by the following:

Work 

If a variable force f (x) is applied to an object in the direction of motion along the x-axis between x = a
and x = b, the work done is 

Cylindrical and Spherical Coordinates 

a. Cylindrical coordinates (Figure 31) 

element of volume dV = r dr dθ dz.
b. Spherical coordinates (Figure 32)

element of volume dV = ρ2 sin φ dρ, dφ dθ.

A 1
2
-- f θ( )[ ] 2 θd

θ1

θ2

∫=

L f θ( )[ ] 2 f ′ θ( )[ ] 2+ θd
θ1

θ2∫=

V π f x( )[ ] 2 xd
a

b

∫=

A 2πf x( ) 1 f ′ x( )[ ] 2+{ } 1 2⁄
xd

a

b

∫=

W f x( ) xd
a

b

∫=

x r θcos=

y r θsin=

x ρ φ θcossin=

y ρ φ θsinsin=

z ρ φcos=
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Double Integration

The evaluation of a double integral of f (x, y) over a plane region R

is practically accomplished by iterated (repeated) integration. For example, suppose that a vertical straight 
line meets the boundary of R in at most two points so that there is an upper boundary, y = y2(x), and a 
lower boundary, y = y1(x). Also, it is assumed that these functions are continuous from a to b (see 
Figure 33). Then

If R has a left-hand boundary, x = x1(y), and a right-hand boundary, x = x2(y), which are continuous 
from c to d (the extreme values of y in R), then

FIGURE 31  Cylindrical coordinates.  FIGURE 32  Spherical coordinates.

FIGURE 33  Region R bounded by y2(x) and y1(x).
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Such integrations are sometimes more convenient in polar coordinates, x = r cos θ, y = r sin θ; dA = 
r dr dθ.

Surface Area and Volume by Double Integration

For the surface given by z = f (x, y), which projects onto the closed region R of the x–y-plane, one may 
calculate the volume V bounded above by the surface and below by R, and the surface area S by the 
following:

[In polar coordinates (r, θ ), we replace dA by r dr dθ ].

Centroid

The centroid of a region R of the x–y-plane is a point (x′, y′) where

and A is the area of the region.

Example.

For the circular sector of angle 2α and radius R, the area A is α R2; the integral needed for x ′, expressed 
in polar coordinates, is

Thus,

Centroids of some common regions are shown in Figure 34.

Vector Analysis

Vectors

Given the set of mutually perpendicular unit vectors i, j, and k (Figure 35), any vector in the space may 
be represented as F = ai + bj + ck, where a, b, and c are components.

Magnitude of F

V z Ad
R∫∫ f x y,( ) xd yd

R∫∫= =

S 1 δz δx⁄( )2 δz δy⁄( )2+ +[ ] 1 2⁄
xd yd

R∫∫=

x ′ 1
A
--- x A           y ′ 1 

A
 - - - y A d 

R
 ∫ ∫ =  d  

R
 ∫  ∫  =

x Ad∫∫ r θcos( )r rd θd
0

R

∫α–

α

∫=

R3

3
----- θsin

α–

α+ 2
3
--R3 αsin= =

x ′

2
3
--R3 αsin

αR2
--------------------- 2

3
--R αsin

α-----------= =

F a2 b2 c2+ +( )
1
2
--

=
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FIGURE 34   

FIGURE 35   The unit vectors i, j, and k.
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Product by Scalar p

Sum of F1 and F2

Scalar Product

(Thus, i · i = j · j = k · k = 1 and i · j = j · k = k · i = 0.) Also,

Vector Product

(Thus, i × i = j × j = k × k = 0, i × j = k, j × k = i, and k × i = j.) Also,

Vector Differentiation

If V is a vector function of a scalar variable t, then

and

For several vector functions V1, V2, K, Vn

pF pai pbj pck+ +=

F1 F2+ a1 a2+( )i b1 b2+( )j c1 c2+( )k+ +=

F1 F2⋅ a1a2 b1b2 c1c2+ +=

F1 F2⋅ F2 F1⋅=

F1 F2+( ) F3⋅ F1 F3 F2 F3⋅+⋅=

F1 F2×
i      j      k

a1     b1    c1

a2     b2    c2

=

F1 F2× F2 F1×–=

F1 F2+( ) F3× F1 F3 F2 F3×+×=

F1 F2 F3+( )× F1 F2 F1 F3×+×=

F1 F2 F3×( )× F1 F3⋅( )F2 F1 F2⋅( )F3–=

F1 F2 F3×( )⋅ F1 F2×( ) F3⋅=

V a t( )i b t( )j c t( )k+ +=

dV
dt
------- da

dt
------i db

dt
------j dc

dt
-----k+ +=

d
dt
----- V1 V2 L Vn+ + +( )

dV1

dt
---------

dV2

dt
--------- L

dVn

dt
---------+ + +=

d
dt
----- V1 V2⋅( ) dV1

dt
--------- V2 V1

dV2

dt
---------⋅+⋅=

d
dt
----- V1 V2×( ) dV1

dt
--------- V2 V1

dV2

dt
---------×+×=
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For a scalar-valued function g(x, y, z)

For a vector-valued function V(a, b, c), where a, b, and c are each a function of x, y, and z,

(divergence)

(curl)

Also,

and

Divergence Theorem (Gauss)

Given a vector function F with continuous partial derivatives in a region R bounded by a closed surface S, 
then

where n is the (sectionally continuous) unit normal to S.

Stokes’ Theorem

Given a vector function with continuous gradient over a surface S that consists of portions that are 
piecewise smooth and bounded by regular closed curves such as C, 

Planar Motion in Polar Coordinates

Motion in a plane may be expressed with regard to polar coordinates (r, θ ). Denoting the position vector 
by r and its magnitude by r, we have r = rR(θ ), where R is the unit vector. Also, dR/dθ = P, a unit vector 
perpendicular to R. The velocity and acceleration are then 

gradient( )     grad g ∇ g δg
δx
------i δg

δy
------j δg

δ z
------k+ += =

divV ∇ V⋅ δa
δx
------

δb
δy
------

δ c
δ z
------+ += =

curlV ∇ V×

i   j   k

δ
δx
------   δ

δy
------   δ

δ z
------

a   b c

= =

div grad g ∇ 2g
δ 2g

δx2
--------

δ 2g

δy2
-------

δ 2g

δz2
-------+ += =

curl grad g 0;            div curl V 0;= =

curl curlV grad divV i ∇ 2a j∇ 2b k ∇ 2c+ +( )–=

iv F⋅d Vd
R∫∫∫ n F Sd⋅

S∫∫=

n curl  F⋅ Sd
S∫∫ F dr⋅

C∫°=

v dr
dt
-----R rdθ

dt
------P+=

a d2r
dt2
------- r dθ

dt
------ 

  2

– R rd2θ
dt2
-------- 2dr

dt
-----

dθ
dt
------+ P+=
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Note that the component of acceleration in the P direction (transverse component) may also be written

so that in purely radial motion it is zero and

which means that the position vector sweeps out area at a constant rate [see Area (Polar Coordinates) 
in the section entitled Integral Calculus].

Special Functions

Hyperbolic Functions

Laplace Transforms

The Laplace transform of the function f (t), denoted by F (s) or L{f (t)}, is defined

1
r
--

d
dt
----- r2dθ

dt
------ 

 

r2dθ
dt
------ C cons ttan( )=

xsinh
ex e x––

2
----------------= xcsch

1
 xsinh

---------------=

xcosh
ex e x–+

2
-----------------= xsech

1
xcosh

----------------=

xtanh
ex e x––
ex e x–+
-----------------= ctnh x

1
xtanh

----------------=

x–( )sinh xsinh–= ctnh x–( ) ctnh x–=

x–( )cosh xcosh= x–( )sech xsech=

x–( )tanh xtanh–= hcsc x–( ) xcsch–=

xtanh
xsinh
xcosh

----------------= ctnh x
xcosh
xsinh

----------------=

h2 x h2 xsin–cos 1= h2 xcos 1
2
-- 2x 1+cosh( )=

h2sin x 1
2
-- 2x 1–cosh( )= ctnh2 x csch2 x– 1=

h2 x sech2 x–csc h2csc x h2 xsec= h2tan x sech2 x+ 1=

h x y+( )sin x y x ysinhcosh+coshsinh=

x y+( )cosh x y x ysinhsinh+coshcosh=

h x y–( )sin x y x ysinhcosh–coshsinh=

x y–( )cosh x y x ysinhsinh–coshcosh=

x y+( )tanh
x ytanh+tanh

1 x ytanhtanh+
-------------------------------------------=

x y–( )tanh
x ytanh–tanh

1 x ytanhtanh–
------------------------------------------=

F s( ) f t( )e st– td
0

∞
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provided that the integration may be validly performed. A sufficient condition for the existence of F (s) 
is that f (t) be of exponential order as t → ∞ and that it is sectionally continuous over every finite interval 
in the range t ≥ 0. The Laplace transform of g(t) is denoted by L{g(t)} or G(s).

Operations

where

(periodic)

Table of Laplace Transforms

f (t) F (s) f (t) F (s)

1 1/s

t 1/s2

1/sn (n = 1, 2, 3, K)  (a ≠ b)

 (a ≠ b)

f t( ) F s( ) f t( )e st– td
0

∞

∫=

af t( ) bg t( )+ aF s( ) bG s( )+

f ′ t( ) sF s( ) f 0( )–

f ″ t( ) s2F s( ) sf 0( )– f ′ 0( )–

f n( ) t( ) snF s( ) sn 1– f 0( )– sn 2– f ′ 0( )– L– f n 1–( ) 0( )–
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tnf t( ) 1–( )nF n( ) s( )

eatf t( ) F s a–( )

f t β–( ) g β( )⋅ βd
0

t

∫ F s( ) G s( )⋅
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f t
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g β( ) βd
0

t

∫ 1
s
--G s( )

f t c–( )δ t c–( ) e cs– F s( ) c 0>,

δ t c–( ) 0 if 0 t c<≤=

 1 if t c≥=

f t( ) f t ω+( )=
e sτ– f τ( ) τd

0

ω

∫
1 e sω––

-----------------------------

h asin t a
s2 a2–
--------------

atcosh s
s2 a2–
--------------

tn 1–

n 1–( )!
------------------ eat ebt– a b–
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-------------------------------

t 1
2s
-----

π
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t
-----

π
s
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eat

teat

 (n = 1, 2, 3, K)

 

z-Transform

For the real-valued sequence {f (k)} and complex variable z, the z-transform, F (z) = Z{f (k)}, is defined by

For example, the sequence f (k) = 1, k = 0, 1, 2, K, has the z-transform

Angles are measured in degrees or radians: 180° = π radians; 1 radian = 180°/π degrees. 
The trigonometric functions of 0°, 30°, 45°, and integer multiples of these are directly computed.

Trigonometric Identities

0° 30° 45° 60° 90° 120° 135° 150° 180°

sin 0 1 0

cos 1 0 –1

tan 0 1 ∞ – 1 0

ctn ∞ 1 0 – 1 ∞

sec 1 2 ∞ – 2 – 1

csc ∞ 2 1 2  ∞

1
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---------- t atcos s2 a2–
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----------------------

1
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----------------- eat btsin b
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---------------------
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∞
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2
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Defining z = esT gives

which is the z-transform of the sampled signal U(kT).

Properties

Linearity: 

Right-shifting property: 

Left-shifting property: 

Time scaling: 

Multiplication by k: 

Initial value: 

Final value: 

Convolution: 

z-Transforms of Sampled Functions

f(k)

1
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lim F z( )=

Z f1 k( )* f2 k( ){ } F1 z( )F2 z( )=
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z
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-------------------------
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---------------------------------------------
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Fourier Series

The periodic function f (t) with period 2π may be represented by the trigonometric series

where the coefficients are determined from

Such a trigonometric series is called the Fourier series corresponding to f (t) and the coefficients are 
termed Fourier coefficients of f (t). If the function is piecewise continuous in the interval – π ≤ t ≤ π and 
has left- and right-hand derivatives at each point in that interval, then the series is convergent with sum 
f (t) except at points ti , at which f (t) is discontinuous. At such points of discontinuity, the sum of the 
series is the arithmetic mean of the right- and left-hand limits of f (t) at ti. The integrals in the formulas 
for the Fourier coefficients can have limits of integration that span a length of 2π, for example, 0 to 2π
(because of the periodicity of the integrands).

Functions with Period Other Than 2π
If f (t) has period P, the Fourier series is

where

Again, the interval of integration in these formulas may be replaced by an interval of length P, for 
example, 0 to P.

Bessel Functions

Bessel functions, also called cylindrical functions, arise in many physical problems as solutions of the 
differential equation 
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FIGURE 36   Square wave. 

FIGURE 37   Sawtooth wave. .

FIGURE 38   Half-wave rectifier. 
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which is known as Bessel’s equation. Certain solutions of the above, known as Bessel functions of the first 
kind of order n, are given by

In the above it is noteworthy that the gamma function must be defined for the negative argument q: 
Γ(q) = Γ(q + 1)/q, provided that q is not a negative integer. When q is a negative integer, 1/Γ(q) is 
defined to be zero. The functions J–n (x) and Jn (x) are solutions of Bessel’s equation for all real n. It is 
seen, for n = 1, 2, 3, K, that

and, therefore, these are not independent; hence, a linear combination of these is not a general solution. 
When, however, n is not a positive integer, a negative integer, or zero, the linear combination with arbitrary 
constants c1 and c2

is the general solution of the Bessel differential equation.
The zero-order function is especially important as it arises in the solution of the heat equation (for a 

“long” cylinder):

while the following relations show a connection to the trigonometric functions:

The following recursion formula gives Jn + 1(x) for any order in terms of lower-order functions:

Legendre Polynomials 

If Laplace’s equation,  ∇ 2V = 0, is expressed in spherical coordinates, it is

and any of its solutions, V (r, θ, φ), are known as spherical harmonics. The solution as a product
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which is independent of φ, leads to

Rearrangement and substitution of x = cosθ leads to

known as Legendre’s equation. Important special cases are those in which n is zero or a positive integer, 
and, for such cases, Legendre’s equation is satisfied by polynomials called Legendre polynomials, Pn(x). 
A short list of Legendre polynomials, expressed in terms of x and cos θ, is given below. These are given 
by the following general formula:

where L = n/2 if n is even and L = (n – 1)/2 if n is odd. 

Additional Legendre polynomials may be determined from the recursion formula 

or the Rodrigues formula 
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Laguerre Polynomials 

Laguerre polynomials, denoted Ln (x), are solutions of the differential equation 

and are given by 

Thus, 

Additional Laguerre polynomials may be obtained from the recursion formula 

Hermite Polynomials 

The Hermite polynomials, denoted Hn (x), are given by

and are solutions of the differential equation

The first few Hermite polynomials are

Additional Hermite polynomials may be obtained from the relation

where prime denotes differentiation with respect to x.

Orthogonality

A set of functions { fn (x)} (n = 1, 2, K ) is orthogonal in an interval (a, b) with respect to a given weight 
function w(x) if 

xy ″ 1 x–( )y ′ ny+ + 0=

Ln x( ) 1–( ) j

j!
------------

j 0=

n

∑ C n j,( )x
j          (n 0, 1, 2, K )==

L0 x( ) 1=

L1 x( ) 1 x–=

L2 x( ) 1 2x– 1
2
--x2+=

L3 x( ) 1 3x– 3
2
--x2 1

6
--x3–+=

n 1+( )Ln 1+ x( ) 2n 1 x–+( )Ln x( )– nLn 1– x( )+ 0=

H0 1=        Hn x( ), 1–( )nex
2 dne x

2
–

dxn
-------------           (n 1, 2, K )==

y″ 2xy ′– 2ny+ 0          (n 0, 1, 2, K )==

H0 1                                             H1 x( ) 2x= =

H2 x( ) 4x2 2                                    H3 x( )– 8x2 12x–= =

H4 x( ) 16x4 48x2– 12+=

Hn 1+ x( ) 2xHn x( ) H ′n x( )–=

w x( ) fm x( ) fn x( ) xd
a

b

∫ 0           when m n≠=



© 2003 by CRC Press LLC

The following polynomials are orthogonal on the given interval for the given w(x):

The Bessel functions of order n, Jn (λ1x), Jn (λ2x), K, are orthogonal with respect to w(x) = x over the 
interval (0, c), provided that the λi are the positive roots of Jn (λc) = 0:

where n is fixed and n ≥ 0.

Statistics

Arithmetic Mean

where Xi is a measurement in the population and N is the total number of Xi in the population. For a 
sample of size n, the sample mean, denoted , is

Median

The median is the middle measurement when an odd number (n) of measurements is arranged in order; 
if n is even, it is the midpoint between the two middle measurements.

Mode

The mode is the most frequently occurring measurement in a set.

Geometric Mean

Harmonic Mean

The harmonic mean H of n numbers X1, X2, K, Xn is

Legendre polynomials:  

Laguerre polynomials:  

Hermite polynomials 
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Variance

The mean of the sum of squares of deviations from the mean (µ) is the population variance, denoted σ2:

The sample variance, s 2, for sample size n is

A simpler computational form is

Standard Deviation

The positive square root of the population variance is the standard deviation. For a population,

for a sample

Coefficient of Variation

Probability

For the sample space U, with subsets A of U (called “events”), we consider the probability measure of an 
event A to be a real-valued function p defined over all subsets of U such that:

If A1 and A2 are subsets of U, then

Two events A1 and A2 are called mutually exclusive if and only if  (null set). These events 
are said to be independent if and only if 
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Conditional Probability and Bayes’ Rule

The probability of an event A, given that an event B has occurred, is called the conditional probability 
and is denoted p(A/B). Further, 

Bayes’ rule permits a calculation of a posteriori probability from given a priori probabilities and is 
stated below: 

If A1, A2, K, An are n mutually exclusive events, and p(A1) + p(A2) + K + p(An) = 1, and B is any 
event such that p(B) is not 0, then the conditional probability p(Ai/B) for any one of the events Ai, given
that B has occurred, is 

Example

Among five different laboratory tests for detecting a certain disease, one is effective with probability 0.75, 
whereas each of the others is effective with probability 0.40. A medical student, unfamiliar with the 
advantage of the best test, selects one of them and is successful in detecting the disease in a patient. What 
is the probability that the most effective test was used?

Let B denote (the event) of detecting the disease, A1 the selection of the best test, and A2 the selection 
of one of the other four tests; thus, p(A1) = 1/5, p(A2) = 4/5, p(B/A1) = 0.75, and p(B/A2) = 0.40. Therefore, 

Note that the a priori probability is 0.20; the outcome raises this probability to 0.319.

Binomial Distribution 

In an experiment consisting of n independent trials in which an event has probability p in a single trial, 
the probability PX of obtaining X successes is given by 

where 

The probability of between a and b successes (both a and b included) is Pa + Pa + 1 + L + Pb , so if a = 
0 and b = n, this sum is

Mean of Binomially Distributed Variable

The mean number of successes in n independent trials is m = np, with standard deviation 
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Normal Distribution

In the binomial distribution, as n increases, the histogram of heights is approximated by the bell-shaped 
curve (normal curve) 

where m = the mean of the binomial distribution = np, and is the standard deviation. For any 
normally distributed random variable X with mean m and standard deviation σ, the probability function 
(density) is given by the above.

The standard normal probability curve is given by 

and has mean = 0 and standard deviation = 1. The total area under the standard normal curve is 1. Any 
normal variable X can be put into standard form by defining Z = (X – m)/σ; thus, the probability of X
between a given X1 and X2 is the area under the standard normal curve between the corresponding Z1

and Z2 (Table 1 in the Tables of Probability and Statistics). The standard normal curve is often used 
instead of the binomial distribution in experiments with discrete outcomes. For example, to determine 
the probability of obtaining 60 to 70 heads in a toss of 100 coins, we take X = 59.5 to X = 70.5 and 
compute corresponding values of Z from mean np = 100  = 50, and the standard deviation

 Thus, Z = (59.5 – 50)/5 = 1.9 and Z = (70.5 – 50)/5 = 4.1. From Table 1, the 
area between Z = 0 and Z = 4.1 is 0.5000 and between Z = 0 and Z = 1.9 is 0.4713; hence, the desired 
probability is 0.0287. The binomial distribution requires a more lengthy computation. 

Note that the normal curve is symmetric, whereas the histogram of the binomial distribution is 
symmetric only if p = q = 1/2. Accordingly, when p (hence, q) differs appreciably from 1/2, the difference 
between probabilities computed by each increases. It is usually recommended that the normal approxi-
mation not be used if p (or q) is so small that np (or nq) is less than 5.

Poisson Distribution

is an approximation to the binomial probability for r successes in n trials when m = np is small (< 5) 
and the normal curve is not recommended to approximate binomial probabilities (Table 2 in the Tables 
of Probability and Statistics). The variance σ 2 in the Poisson distribution is np, the same value as the mean.

Example

A school’s expulsion rate is 5 students per 1000. If class size is 400, what is the probability that 3 or more 
will be expelled? Since p = 0.005 and n = 400, m = np = 2 and r = 3. From Table 2 we obtain for m = 2 
and r ( = x) = 3 the probability p = 0.323. 

Y 1

σ 2π
-------------- e x m–( )2

2σ2⁄–=

σ npq=

y 1

2π
---------- e Z–

2
2⁄=

1
2
--

σ 100( ) 1 2⁄( ) 1 2⁄( ) 5.= =

C 100 60,( ) 1 2⁄( )60 1 2⁄( )40 C 100 61,( ) 1 2⁄( )61 1 2⁄( )39
L C 100 70,( ) 1 2⁄( )70 1 2⁄( )30+ + +

P
e m– m

r

r!
--------------=



© 2003 by CRC Press LLC

Tables of Probability and Statistics

TABLE 1 Areas Under the Standard Normal Curve

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

Source: R.J. Tallarida and R.B. Murray, Manual of Pharmacologic Calculations with Computer Programs, 2nd 
ed., New York: Springer-Verlag, 1987. With permission.

0 z
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TABLE 2 Poisson Distribution

Each number in this table represents the probability of obtaining at least  X successes, or the area under the histogram to the 
right of and including the rectangle whose center is at X.

m X = 0 X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8 X = 9 X = 10 X = 11 X = 12 X = 13 X = 14

.10 1.000 .095 .005

.20 1.000 .181 .018 .001

.30 1.000 .259 .037 .004

.40 1.000 .330 .062 .008 .001

.50 1.000 .393 .090 .014 .002

.60 1.000 .451 .122 .023 .003

.70 1.000 .503 .156 .034 .006 .001

.80 1.000 .551 .191 .047 .009 .001

.90 1.000 .593 .228 .063 .013 .002
1.00 1.000 .632 .264 .080 .019 .004 .001

1.1 1.000 .667 .301 .100 .026 .005 .001
1.2 1.000 .699 .337 .120 .034 .008 .002
1.3 1.000 .727 .373 .143 .043 .011 .002
1.4 1.000 .753 .408 .167 .054 .014 .003 .001
1.5 1.000 .777 .442 .191 .066 .019 .004 .001
1.6 1.000 .798 .475 .217 .079 .024 .006 .001
1.7 1.000 .817 .507 .243 .093 .030 .008 .002
1.8 1.000 .835 .537 .269 .109 .036 .010 .003 .001
1.9 1.000 .850 .566 .296 .125 .044 .013 .003 .001
2.0 1.000 .865 .594 .323 .143 .053 .017 .005 .001
2.2 1.000 .889 .645 .377 .181 .072 .025 .007 .002
2.4 1.000 .909 .692 .430 .221 .096 .036 .012 .003 .001
2.6 1.000 .926 .733 .482 .264 .123 .049 .017 .005 .001
2.8 1.000 .939 .769 .531 .308 .152 .065 .024 .008 .002 .001
3.0 1.000 .950 .801 .577 .353 .185 .084 .034 .012 .004 .001
3.2 1.000 .959 .829 .620 .397 .219 .105 .045 .017 .006 .002
3.4 1.000 .967 .853 .660 .442 .256 .129 .058 .023 .008 .003 .001
3.6 1.000 .973 .874 .697 .485 .294 .156 .073 .031 .012 .004 .001
3.8 1.000 .978 .893 .731 .527 .332 .184 .091 .040 .016 .006 .002
4.0 1.000 .982 .908 .762 .567 .371 .215 .111 .051 .021 .008 .003 .001
4.2 1.000 .985 .922 .790 .605 .410 .247 .133 .064 .028 .011 .004 .001
4.4 1.000 .988 .934 .815 .641 .449 .280 .156 .079 .036 .015 .006 .002 .001
4.6 1.000 .990 .944 .837 .674 .487 .314 .182 .095 .045 .020 .008 .003 .001
4.8 1.000 .992 .952 .857 .706 .524 .349 .209 .113 .056 .025 .010 .004 .001
5.0 1.000 .993 .960 .875 .735 .560 .384 .238 .133 .068 .032 .014 .005 .002 .001

Source: H.L. Adler and E.B. Roessler, Introduction to Probability and Statistics, 6th ed., New York: W. H. Freeman, 1977. With 
permission.

X
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TABLE 3 t-Distribution

deg. freedom, f
90%

(P = 0.1)
95%

(P = 0.05)
99%

(P = 0.01)

1 6.314 12.706 63.657
2 2.920 4.303 9.925
3 2.353 3.182 5.841
4 2.132 2.776 4.604
5 2.015 2.571 4.032
6 1.943 2.447 3.707
7 1.895 2.365 3.499
8 1.860 2.306 3.355
9 1.833 2.262 3.250

10 1.812 2.228 3.169
11 1.796 2.201 3.106
12 1.782 2.179 3.055
13 1.771 2.160 3.012
14 1.761 2.145 2.977
15 1.753 2.131 2.947
16 1.746 2.120 2.921
17 1.740 2.110 2.898
18 1.734 2.101 2.878
19 1.729 2.093 2.861
20 1.725 2.086 2.845
21 1.721 2.080 2.831
22 1.717 2.074 2.819
23 1.714 2.069 2.807
24 1.711 2.064 2.797
25 1.708 2.060 2.787
26 1.706 2.056 2.779
27 1.703 2.052 2.771
28 1.701 2.048 2.763
29 1.699 2.045 2.756
inf. 1.645 1.960 2.576

Source: R.J. Tallarida and R.B. Murray, Manual of Phar-
macologic Calculations with Computer Programs, 2nd ed., 
New York: Springer-Verlag, 1987. With permission.

−t t0
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TABLE 4 χ2-Distribution

v 0.05 0.025 0.01 0.005

 1 3.841 5.024 6.635 7.879
 2 5.991 7.378 9.210 10.597
 3 7.815 9.348 11.345 12.838
 4 9.488 11.143 13.277 14.860
 5 11.070 12.832 15.086 16.750
 6 12.592 14.449 16.812 18.548
 7 14.067 16.013 18.475 20.278
 8 15.507 17.535 20.090 21.955
 9 16.919 19.023 21.666 23.589

10 18.307 20.483 23.209 25.188
11 19.675 21.920 24.725 26.757
12 21.026 23.337 26.217 28.300
13 22.362 24.736 27.688 29.819
14 23.685 26.119 29.141 31.319
15 24.996 27.488 30.578 32.801
16 26.296 28.845 32.000 34.267
17 27.587 30.191 33.409 35.718
18 28.869 31.526 34.805 37.156
19 30.144 32.852 36.191 38.582
20 31.410 34.170 37.566 39.997
21 32.671 35.479 38.932 41.401
22 33.924 36.781 40.289 42.796
23 35.172 38.076 41.638 44.181
24 36.415 39.364 42.980 45.558
25 37.652 40.646 44.314 46.928
26 38.885 41.923 45.642 48.290
27 40.113 43.194 46.963 49.645
28 41.337 44.461 48.278 50.993
29 42.557 45.722 49.588 52.336
30 43.773 46.979 50.892 53.672

Source: J.E. Freund and F.J. Williams, Elementary 
Business Statistics: The Modern Approach, 2nd ed., 
Englewood Cliffs, N.J.: Prentice-Hall, 1972. With per-
mission.

X2

0
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TABLE 5 Variance Ratio

n1

n2 1 2 3 4 5 6 8 12 24 ∞

F(95%)

1 161.4 199.5 215.7 224.6 230.2 234.0 238.9 243.9 249.0 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40
12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30
13 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.29 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73
25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71
26 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67
28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65
29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51
60 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25
∞ 3.84 2.99 2.60 2.37 2.21 2.10 1.94 1.75 1.52 1.00

F(99%)

1 4052 4999 5403 5625 5764 5859 5982 6106 6234 6366
2 98.50 99.00 99.17 99.25 99.30 99.33 99.37 99.42 99.46 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12
4 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46
5 16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.47 9.02
6 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91
11 9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36
13 9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16
14 8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65
18 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57
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Table of Derivatives

In the following table, a and n are constants, e is the base of the natural logarithms, and u and v denote 
functions of x.

1.

2.

3.

4.

5.

6.

7.

8.

TABLE 5 (continued) Variance Ratio

n1

n2 1 2 3 4 5 6 8 12 24 ∞

19 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36
22 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21
25 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17
26 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.55 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03
30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34 1.95 1.38
∞ 6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00

Source: R.A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research,
London: The Lingman Group, Ltd. With permission.
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9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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24.  

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Additional Relations with Derivatives

If x = f (y), then 
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If y = f (u) and u = g (x), then 

If x = f (t) and y = g (t), then and 

(Note: Exponent in denominator is 3.)

Integrals

Elementary Forms

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.
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15.

16.

17.

18.

19.

20.

21.

22.

Forms Containing (a + bx)

For forms containing a + bx but not listed in the table, the substitution  may prove helpful.

23.

24.

25.
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26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
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37.

38.

39.

40.

41.

42.

The Fourier Transforms

For a piecewise continuous function F (x) over a finite interval 0 � x � π, the finite Fourier cosine 
transform of F (x) is

(1)

If x ranges over the interval 0 � x � L, the substitution x′ = π x/L allows the use of this definition, 
also. The inverse transform is written

(2)

where . We observe that F (x) = F (x) at points of continuity. The formula

(3)

makes the finite Fourier cosine transform useful in certain boundary value problems.
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Corresponding to (3) we have

(6)

Fourier Transforms

If F (x) is defined for x � 0 and is piecewise continuous over any finite interval, and if

is absolutely convergent, then

(7)

is the Fourier cosine transform of F (x). Furthermore,

(8)

If , an important property of the Fourier cosine transform,

(9)

where , makes it useful in the solution of many problems.

Under the same conditions, 

(10)

defines the Fourier sine transform of F (x), and

(11)

Corresponding to (9), we have

(12)

Similarly, if F (x) is defined for – ∞ < x < ∞, and if  is absolutely convergent, then

(13)

fs
2( ) n( ) F″ x( ) nxsin xd

0

π

∫=

n2fs n( )– nF 0( )– n 1–( )nF π( )–=

F x( ) xd
0

∞

∫

fc α( ) 2
π--- F x( ) αx( )cos xd

0

∞

∫=

F x( ) 2
π--- fc α( ) αx( )cos αd

0

∞

∫=

d nF

dxn
---------

x ∞→
lim 0=

 fc
2r( ) α( ) 2

π---
d2rF

x2rd
---------- 

  αx( )cos xd
0

∞

∫=

2
π
--- 1–( )na2r 2n– 1– a2n 1–( )'α 2rfc α( )+

n 0=

r 1–

∑–=

drF

dxr
--------

x 0→
lim ar=

 fs α( ) 2
π--- F x( ) αx( )sin xd

0

∞

∫=

F x( ) 2
π---   fs α( ) αx( )sin αd

0

∞

∫=

 fs
2r( ) α( ) 2

π---   d2rF

dx2r
---------- ax( )sin xd

0

∞

∫=

2
π
---– 1–( )nα 2n 1– a2r 2n– 1–( )r 1– α 2rfs α( )+

n 1=

r

∑=

F x( )  xd
∞–

∞

∫

 f α( ) 1

2π
----------   F x( )eiα x xd

∞–

∞

∫=
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is the Fourier transform of F (x), and

(14)

Also, if

then

(15)

Finite Sine Transforms

fs(n) F(x)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

F x( ) 1

2π
----------   f α( )e i– α x αd

∞–

∞

∫=

dnF

dxn
--------

x ∞→
lim 0=             n 1 2 K r 1–, , ,=( )

 f r( ) α( ) 1

2π
----------   F r( ) x( )eiα x xd

∞–

∞

∫ iα–( )rf α( )= =

fs n( ) F x( ) nxsin x     n 1 2 K, ,=( )d
0

π

∫= F x( )

1–( )n 1+ fs n( ) F π x–( )

1
n
--- π x–

π
------------

1–( )n 1+

n
------------------

x
π
---

1 1–( )n–
n

---------------------- 1

2

n2
----- nπ

2
------sin

x when  0 x π 2⁄< <
π x   when π 2⁄ x π< <–




1–( )n 1+

n3
------------------ x π2 x2–( )

6π
------------------------

1 1–( )– n

n3
---------------------- x π x–( )

2
--------------------

π2 1–( )n 1–

n
------------------------ 2 1 1–( )n–[ ]

n3
------------------------------– x2

π 1–( )n 6

n3
----- π2

n
-----– 

  x3

n

n2 c2+
--------------- 1 1–( )necπ–[ ] ecx

n

n2 c2+
--------------- h c π x–( )sin

 cπsinh
--------------------------------

n

n2 k2–
--------------- k 0 1 2 K, , ,≠( ) h k π x–( )sin

 sin kπ
---------------------------------

π
2
---  when  n m=

m 1 2 K, ,=( )
0 when  n m≠






 mxsin
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Finite Cosine Transforms

15

16

17

18

19

fc(n) F(x)

1  (n = 0, 1, 2, K) F(x)

2
3 0 when n = 1, 2, K; fc(0) = π 1

4

5 x

6

7

8 x3

9

10

11  (k ≠ 0, 1, 2, K) sin kx

12  (m = 1, 2, K)

13  (k ≠ 0, 1, 2, K)

14 0 when n = 1, 2, K;  

            (m = 1, 2, K)

fs(n) F(x)

n

n2 k2–
--------------- 1 1–( )n  kπcos–[ ] k 1 2 K, ,≠( )   kxcos

n

n2 m2–
----------------- 1 1–( )n m+–[ ]

when  n m≠ 1 2 K, ,=

0           when  n m=







  mxcos

n

n2 k2–( )2
---------------------- k 0 1 2 K, , ,≠( ) π  kxsin

2k  sin2kπ
------------------------- x  kcos  π x–( )

2k  kπsin
----------------------------------–

bn

n
---- b 1≤( ) 2

π
---   arctan  b   xsin

1 b   xcos–
--------------------------

1 1–( )n–
n

----------------------bn   b 1≤( )
2
π
---   arctan  2b   xsin

1 b2 –
---------------------

fc n( ) F x( ) nxcos xd
0

π

∫=

1–( )nfc n( ) F π x–( )

2
n
--- nπ

2
------  fc 0( );sin 0=

1 when 0 x π 2⁄< <
1 when π 2⁄ x π< <–




1 1–( )n–
n2

----------------------  fc 0( );– π2

2
-----=

1–( )n

n2
-------------  fc 0( ); π2

6
-----= x2

2π
------

1
n2
-----  fc 0( ); 0= π x–( )2

2π
------------------ π

6
---–

3π2 1–( )n

n2
------------- 6 1 1–( )n–

n4
----------------------  fc 0( );– π4

4
-----=

1–( )necπ 1–

n2 c2+
---------------------------- 1

c
---ecx

1
n2 c2+
--------------- c π x–( )cosh

c cπsinh
------------------------------

k
n2 k2–
--------------- 1–( )n πk 1–cos[ ]

1–( )n m+ 1–
n2 m2–

----------------------------  fc m( ); 0= 1
m
---- mxsin

1
n2 k2–
--------------- k π x–( )cos

k kπsin
----------------------------–

fc m( ) π
2
---=

mxcos
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Fourier Sine Transforms

Fourier Cosine Transforms

F (x) fs(α)

1

2

3

4

5

6

7

* C(y) and S(y) are the Fresnel integrals.

F (x) fc(α)

1

2

3

4

5

6

7

1 0 x a< <( )
0 x a>( )


 2

π
--- 1 αcos–

α
---------------------

xp 1– 0 p 1< <( ) 2
π
--- Γ p( )

α p
----------- pπ

2
------sin

x 0 x a< <( )sin

0 x a>( )

 1

2π
---------- a 1 α–( )[ ]sin

1 α–
---------------------------------- a 1 α+( )[ ]sin

1 α+
----------------------------------–

e x– 2
π
--- α

1 α 2+
---------------

xe x2 2⁄– α e α2 2⁄–

x2

2
----cos 2 α 2

2
-----C α 2

2
----- 

  α 2

2
-----S α 2

2
----- 

 cos–sin
*

x2

2
----sin 2

α 2

2
-----cos C α 2

2
----- 

  α 2

2
-----sin S α 2

2
----- 

 +
*

C y( ) 1

2π
----------

1

t
----- tcos td

0

y

∫=

S y( ) 1

2π
----------

1

t
----- t tdsin

0

y

∫=

1 0 x a< <( )
0 x a>( )


 2

π
--- aαsin

α
---------------

xp 1– 0 p 1< <( ) 2
π
--- Γ p( )

α p
----------- pπ

2
------cos

x 0 x a< <( )cos

0 x a>( )

 1

2π
---------- a 1 α–( )[ ]sin

1 α–
---------------------------------- a 1 α+( )[ ]sin

1 α+
----------------------------------+

e x– 2
π
--- 1

1 α 2+
--------------- 

 

e x2 2⁄– e α2 2⁄–

x2

2
----cos

α 2

2
----- π

4
---– 

 cos

x2

2
----sin

α 2

2
----- π

4
---+ 

 cos
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Fourier Transforms
F (x) f (α)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 axsin
x

----------------
π
2
--- α a<

0 α a>





eiwx p x q< <( )
0 x p x q>,<( )


 i

2π
---------- eip w α+( ) eiq w α+( )–

w α+( )
----------------------------------------

e cx– iwx+ x 0>( )
c 0>( )

0 x 0<( )





i

2π w α ic+ +( )
-----------------------------------------

e px
2

– R p( ) 0>
1

2p
----------e α2

4p⁄–

px2cos
1

2p
---------- α 2

4p
------ π

4
---–cos

 px2sin
1

2p
---------- α 2

4p
------ π

4
---+cos

x p– 0 p 1< <( ) 2
π
---  

Γ 1 p–( ) pπ
2

------sin

α 1 p–( )
--------------------------------------

e a x–

x
--------- a2 α 2+( ) a+

a2 α 2+
---------------------------------------

 axcosh
 πxcosh

------------------- π a π< <–( ) 2
π
---

a
2
--- α

2
---coshcos

 α  acos+cosh
-----------------------------------

 axsinh
 πxsinh

------------------- π a π< <–( ) 1

2π
----------  asin

 α  acos+cosh
-----------------------------------

1

a2 x2–
------------------- x a<( )

0 x a>( )





π
2
--- J0 aα( )

b a2 x2+sin

a2 x2+
------------------------------------

0 α b>( )

π
2
--- J0 a b2 α 2–( ) α b<( )







Pn x( ) x 1<( )
0 x 1>( )


 in

α
------- Jn 1

2
--+ α( )

b a2 x2–cos

a2 x2–
------------------------------------ x a<( )

0 x a>( )







π
2
--- J0 a a2 b2+( )

h b a2 x2–cos

a2 x2–
--------------------------------------- x a<( )

0 x a>( )







π
2
--- J0 a α 2 b2–( )
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The following functions appear among the entries of the tables on transforms.

Numerical Methods

Solution of Equations by Iteration

Fixed-Point Iteration for Solving f (x) = 0

Transform f (x) = 0 into the form x = g(x). Choose x0 and compute x1 = g(x0), x2 = g(x1), and in general

Newton–Raphson Method for Solving f (x) = 0

f is assumed to have a continuous derivative f   ′. Use an approximate value x0 obtained from the graph of 
f. Then compute

and in general

Secant Method for Solving f (x) = 0

The secant method is obtained from Newton’s method by replacing the derivative f ′(x) by the difference 
quotient

Thus,

The secant method needs two starting values x0 and x1.

Function Definition Name

Error function

Complementary function to  
 error function

Laguerre polynomial of degree n

Ei x( ) ev

v
---- v ; or sometimes defined asd

∞–

x

∫

Ei x–( )– e v–

v
------ vd

x

∞

∫=

Si x( ) vsin
v

---------- vd
0

x

∫

Ci x( )
 vcos

v
------------ v ; or sometimes defined asd

∞

x

∫
negative of this integral

erf x( )
2

π
------- e v–

2

vd
0

x

∫

erfc x( ) 1 erf x( )– 2

π
------- e v

2
– vd

x

∞

∫=

Ln x( ) ex

n!
----- dn

dxn
-------- xne x–( )        n  = 0, 1, 2, …( )

xn 1+ gxn      n = 0, 1, 2, …( )=

x1 x0
f x0( )

f ′ x0( )
--------------          x2,– x1

f x1( )
f ′ x1( )
--------------–= =

xn 1+ xn

f x0( )
f ′ xn( )
--------------–=

 f ′ xn( )
f xn( ) f xn 1–( )–

xn xn 1––
----------------------------------=

xn 1+ xn f xn( ) xn xn 1––
f xn( ) f xn 1–( )–
----------------------------------–=
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Method of Regula Falsi for Solving  f (x) = 0 

Select two starting values x0 and x1. Then compute

If f (x0) ⋅ f (x2) < 0, replace x1 by x2 in formula for x2, leaving x0 unchanged, and then compute the next 
approximation x3; otherwise, replace x0 by x2, leaving x1 unchanged, and compute the next approximation 
x3. Continue in a similar manner.

Finite Differences

Uniform Interval h

If a function f (x) is tabulated at a uniform interval h, that is, for arguments given by xn = x0 + nh, where 
n is an integer, then the function f (x) may be denoted by fn.

This can be generalized so that for all values of p, and in particular for 0 � p � 1,

where the argument designated x0 can be chosen quite arbitrarily.
The following table lists and defines the standard operators used in numerical analysis.

I, �–1, �–1, and δ–1 all imply the existence of an arbitrary constant that is determined by the initial 
conditions of the problem.

Where no confusion can arise, the f can be omitted as, for example, in writing �p for �f p .
Higher differences are formed by successive operations, e.g.,

Symbol Function Definition

E Displacement

∆ Forward difference

∇ Backward difference

Α Divided difference

δ Central difference

µ Average

�–1 Backward sum

�–1 Forward sum

δ–1 Central sum

D Differentiation

I ( = D–1) Integration

J ( = �D–1) Definite integration

x2

x0 f x1( ) x1 f x0( )–
f x1( ) f x0( )–

-----------------------------------------=

f x0 ph+( ) f xp( ) fp= =

Efp fp 1+=

∆fp fp 1+ fp–=

∇ fp fp fp 1––=

ofp f
p 1

2
--+

f
p 1

2
--–

–=

ufp
1
2
--- fp 1

2
--+ fp 1

2
--–+ 

 =

∆ 1–
fp ∆ 1–

fp 1– fp 1–+=

∇ 1–
fp ∇ 1– fp 1– fp+=

δ 1–
fp δ 1–

fp 1– f
p 1

2
--–

+=

Dfp
d

dx
------ f x( ) 1

h
---

d
dp
------ fp⋅= =

Ifp f x( ) xd
xp

∫ h fp pd
p

∫= =

Jfp h fp pd
p

p 1+

∫=
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Note that .
The disposition of the differences and sums relative to the function values is as shown (the arguments 

are omitted in these cases in the interest of clarity).

In the forward difference scheme, the subscripts are seen to move forward into the difference table 
and no fractional subscripts occur. In the backward difference scheme, the subscripts lie on diagonals 
slanting backward into the table, while in the central difference scheme, the subscripts maintain their 
positions and the odd-order subscripts are fractional.

All three, however, are merely alternative ways of labeling the same numerical quantities, as any 
difference is the result of subtracting the number diagonally above it in the preceding column from that 
diagonally below it in the preceding column, or, alternatively, it is the sum of the number diagonally 
above it in the subsequent column with that immediately above it in its own column.

Calculus of Finite Differences
Forward difference scheme Backward difference scheme

Central difference scheme

∆2fp ∆p
2=

∆ ∆p⋅=

∆ fp 1+ fp–( )=

∆= p 1+ ∆p–

f= p 2+ fp 1+– fp 1+– fp+

f= p 2+ 2fp 1+– fp+

fp ∆p
0 ∇ p

0 δp
0≡ ≡ ≡

∆ 1–
2– f 2– ∆ 2–

2

∆ 1–
1– ∆ 2– ∆ 3–

3

∆ 0
2– f 1– ∆ 2–

2

∆ 0
1– ∆ 1– ∆ 2–

3

∆ 1
2– f0 ∆ 1–

2

∆ 1
1– ∆0 ∆ 1–

3

∆ 2
2– f1 ∆ 0

2

∆ 2
1– ∆1 ∆ 0

3

∆ 3
2– f2 ∆1

2

∇ 3–
2– f 2– ∇ 1–

2

∇ 2–
1– ∇ 1– ∇ 0

2

∇ 2–
2– f 1– ∇ 0

2

∇ 1–
1– ∇ 0 ∇ 1

3

∇ 1–
2– f0 ∇ 1

2

∇ 0
1– ∇ 1 ∇ 2

3

∇ 0
2– f1 ∇ 2

2

∇ 1– ∇ 2 ∇ 3
3

∇ 1
2– f2 ∇ 3

2

δ 2–
2– f 2– δ 2–

2 δ 2–
4

δ
11

2
--–

1– δ 11
2
--– δ 11

2
--–

3

δ 1–
2– f 1– δ 1–

2 δ 1–
4

δ 1
2
--–
1– δ 1

2
--–

δ 1
2
--–

3

δ 0
2– f 0 δ 0

2 δ 0
4

δ 1
2
--

1– δ 1
2
--

δ 1
2
--

3

δ 1
2– f 1 δ 1

2 δ 1
4

δ
11

2
--–

1– δ
11

2
--

δ
11

2
--

3

δ 2
2– f 2 δ 2

2 δ 2
4
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In general,    

If a polynomial of degree r is tabulated exactly, i.e., without any round-off errors, then the r th 
differences are constant.

The following table enables the simpler operators to be expressed in terms of the others:

In addition to the above, there are other identities by means of which the above table can be extended, 
such as

Note the emergence of Taylor’s series from

Interpolation

Finite difference interpolation entails taking a given set of points and fitting a function to them. This 
function is usually a polynomial. If the graph of f (x) is approximated over one tabular interval by a chord 
of the form y = a + bx chosen to pass through the two points

the formula for the interpolated value is found to be

If the graph of f (x) is approximated over two successive tabular intervals by a parabola of the form 
y = a + bx + cx2 chosen to pass through the three points

∆n
p 1

2
--n– δp

n ∇ p 1
2
--n+

.
n≡ ≡

E ∆ δ µ, ∇

E –– 1 ∆+ 1 µδ 1
2
---δ2

+ + 1 ∇–( ) 1–

∆ E 1– –– µδ 1
2
---δ 2

+ ∇ 1 ∇–( ) 1–

δ E
1
2
--

E
1
2
--–

– ∆ 1 ∆+( )
1
2
--–

2 µ2 1–( )
1
2
--

∇ 1 ∇–( )
1
2
--–

∇ E 1–– ∆ 1 ∆+( ) 1– µδ 1
2
---δ

2
– ––

µ 1
2
--- E

1
2
--

 E
1
2
--–+ 

  1
2
--- 2 ∆+( ) 1 ∆+( )

1
2
--–

1 1
4
---δ 2+( )

1
2
--

1
2
--- 2 ∇–( ) 1 ∇–( )

1
2
--–

E ehD ∆∇ 1–= =

µ E
1
2 
----– 1

2
---δ+ E

1
2
--

1
2
---δ– 1

2
---hD( )cosh= = =

δ E
1
2
--– ∆ E

1
2
--

∇ ∆ ∇( )
1
2
--

= = 2 1
2
---hD( )sinh= =

fp E
p
f0=

ephDf0=

f0 phDf0
1
2!
----p2h2D2f0 L+ + +=

x0 f x0( ),( )              x0 h f x0 h+( ),+( ),

f x0 ph+( ) f x0( ) p f x0 h+( ) f x0( )–[ ]+=

f x0( ) p∆f0+=
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the formula for the interpolated value is found to be

Using polynomial curves of higher order to approximate the graph of f (x), a succession of interpolation 
formulas involving higher differences of the tabulated function can be derived. These formulas provide, 
in general, higher accuracy in the interpolated values.

Newton’s Forward Formula

Newton’s Backward Formula

Gauss’ Forward Formula

Gauss’ Backward Formula

Stirling’s Formula

Steffenson’s Formula

x0 f x0( ),( )              x0 h f x0 h+( ),+( ),                x0 2h f x0 2h+( ),+( ),

f x0 ph+( ) f x0( ) p f x0 h+( ) f x0( )–[ ]+=

p p 1–( )
2!

------------------- f x0 2h+( ) 2f x0 h+( )– f x0( )+[ ]+

f0 p f0
p p 1–( )

2!
-------------------∆2f0+∆+=

fp f0 p∆0
1
2!
----p p 1–( )∆0

2 1
3!
----p p 1–( ) p 2–( )∆0

3 L               0 p 1≤ ≤+ + +=

fp f0 p∇ 0
1
2!
----p p 1+( )∇ 0

2 1
3!
----p p 1+( ) p 2+( )∇ 0

3 L      0  p 1≤≤+ + +=

fp f0 pδ 1
2
--

G2δ0
2

G3δ 1
2
--

3
G4δ 0

4
G5δ 1

2
--

5 L                 0  p 1≤≤+ + + + +=

fp f0 pδ 1
2
--– G∗

2 δ0
2 G3δ 1

2
--–

3 G
∗
4 δ0

4 G5δ 1
2
--–

5  L          0  p 1≤≤+ + + + +=

In the above, G 2n
p n 1–+

2n 
 =

G∗
2n

p n+
2n 

 =

G2n 1+
p n+

2n 1+ 
 =

fp f0
1
2
---p δ1

2
--

δ 1
2
--–

+ 
  1

2
---p2δ0

2
S3 δ1

2
--

3 δ 1
2
--–

3+ 
  S4δ 0

4  L  1
2
---  p 1

2
---≤ ≤–+ + + + +=

fp f0
1
2
---p p 1+( )δ1

2
--

1
2
--- p 1–( )pδ 1

2
--–

– S3 S4+( )δ1
2
--

3 S3 S4–( )δ 1
2
--–

3
L         1

2
---  p 1

2
---≤ ≤–+ + +=
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Bessel’s Formula

Everett’s Formula

The coefficients in the above two formulae are related to each other and to the coefficients in the Gaussian 
formulae by the identities

Also, for q � 1 – p the following symmetrical relationships hold:

as can be seen from the tables of these coefficients.

Bessel’s Formula (Unmodified)

In the above, S2n 1+
1
2
-- p n+

2n 1+ 
 =

S2n 2+
p

2n 2+
--------------- p n+

2n 1+ 
 =

S2n 1+ S2n 2++ p n 1+ +
2n 2+ 

 =

S2n 1+ S2n 2+– p n+
2n 2+ 

 –=

fp f0 pδ1
2
--

B2 δ0

2
δ1

2
+ 

  B3δ1
2
--

3
B4 δ 0

4 δ1
4

+( ) B5δ1
2
--

5
L             0  p 1≤≤+ + + + + +=

fp 1 p–( )f0 pf1 E2δ0

2
F2δ1

2
E4δ0

4
F4δ1

4
E6δ0

6
F6δ1

6
L     0  p 1≤≤+ + + + + + + +=

B2n   1
2
---G2n

1
2
--- E2n F2n+( )≡≡

B2n 1+ G2n 1+
1
2
---G2n

1
2
--- F2n E2n–( )≡–≡

E2n  G2n G2n 1+ B2n B2n 1+–≡–≡
F2n G2n 1+ B2n B2n 1++≡ ≡

B2n p( )  B2n q( )≡
B2n 1+ p( )  B– 2n 1+ q( )≡

E2n p( )  F2n q( )≡
F2n p( )  E2n q( )≡

fp f0 pδ1
2
--

B2 δ0

2
δ1

2
+ 

  B3δ1
2
--

3
B4 δ0

4
δ1

4
+( ) B5δ1

2
--

5
B6 δ0

6
δ1

6
+ 

  B7δ1
2
--

7
L+ + + + + + + +=
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Lagrange’s Interpolation Formula

Newton’s Divided Difference Formula

where

The layout of a divided difference table is similar to that of an ordinary finite difference table.

where the �’s are defined as follows:

and in general

and  

f x( ) x x1–( ) x x2–( )… x xn–( )
x0 x1–( ) x0 x2–( )… x0 xn–( )

-------------------------------------------------------------------- f x0( )=

x x0–( ) x x2–( )… x xn–( )
x1 x0–( ) x1 x2–( )… x1 xn–( )

--------------------------------------------------------------------+ f x1( )

L
x x0–( ) x x1–( )… x xn 1––( )
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Iterative Linear Interpolation

Neville’s modification of Aiken’s method of iterative linear interpolation is one of the most powerful 
methods of interpolation when the arguments are unevenly spaced, as no prior knowledge of the order 
of the approximating polynomial is necessary nor is a difference table required.

The values obtained are successive approximations to the required result and the process terminates 
when there is no appreciable change. These values are, of course, useless if a new interpolation is required 
when the procedure must be started afresh.

Defining

the computation is laid out as follows:

As the iterates tend to their limit, the common leading figures can be omitted.

Gauss’s Trigonometric Interpolation Formula

This is of greatest value when the function is periodic, i.e., a Fourier series expansion is possible.

where Cr = Nr(x)/Nr(xr) and

This is similar to the Lagrangian formula.

Reciprocal Differences

These are used when the quotient of two polynomials will give a better representation of the interpolating 
function than a simple polynomial expression.
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A convenient layout is as shown below:

The interpolation formula is expressed in the form of a continued fraction expansion.
The expansion corresponding to Newton’s forward difference interpolation formula, in the sense of 

the differences involved, is

while that corresponding to Gauss’ forward formula is
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Probability

Definitions

A sample space S associated with an experiment is a set S of elements such that any outcome of the 
experiment corresponds to one and only one element of the set. An event E is a subset of a sample space 
S. An element in a sample space is called a sample point or a simple event (unit subset of S).

Definition of Probability

If an experiment can occur in n mutually exclusive and equally likely ways, and if exactly m of these ways 
correspond to an event E, then the probability of E is given by

If E is a subset of S, and if to each unit subset of S a non-negative number, called its probability, is 
assigned, and if E is the union of two or more different simple events, then the probability of E, denoted 
by P(E  ), is the sum of the probabilities of those simple events whose union is E.

Marginal and Conditional Probability

Suppose a sample space S is partitioned into rs disjoint subsets where the general subset is denoted by 
Ei ∩ Fj . Then the marginal probability of Ei is defined as

 

and the marginal probability of Fj is defined as

The conditional probability of Ei , given that Fj has occurred, is defined as

 

and that of Fj , given that Ei has occurred, is defined as
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Probability Theorems

1. If φ is the null set, P(φ ) = 0.
2. If S is the sample space, P(S) = 1.
3. If E and F are two events,

4. If E and F are mutually exclusive events,

5. If E and E′  are complementary events,

6. The conditional probability of an event E, given an event F, is denoted by P(E/F) and is defined as

where P(F  ) ≠ 0.
7. Two events E and F are said to be independent if and only if

E is said to be statistically independent of F if P(E/F ) = P(E ) and P(F/E ) = P(F ).
8. The events E1, E2, K, En are called mutually independent for all combinations if and only if every 

combination of these events taken any number at a time is independent.
9. Bayes Theorem.

If E1, E2, K, En are n mutually exclusive events whose union is the sample space S, and E is any 
arbitrary event of S such that P(E ) ≠ 0, then

Random Variable

A function whose domain is a sample space S and whose range is some set of real numbers is called a 
random variable, denoted by X. The function X transforms sample points of S into points on the x-axis. 
X will be called a discrete random variable if it is a random variable that assumes only a finite or 
denumerable number of values on the x-axis. X will be called a continuous random variable if it assumes 
a continuum of values on the x-axis.

Probability Function (Discrete Case)

The random variable X will be called a discrete random variable if there exists a function f such that 
f  (xi) ≥ 0 and  for i = 1, 2, 3, K and such that for any event E,

where means sum f (x) over those values xi that are in E and where f (x) = P[X = x].
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The probability that the value of X is some real number x is given by f (x) = P [X = x], where f is called 
the probability function of the random variable X.

Cumulative Distribution Function (Discrete Case)

The probability that the value of a random variable X is less than or equal to some real number x is 
defined as

where the summation extends over those values of i such that xi ≤ x.

Probability Density (Continuous Case)

The random variable X will be called a continuous random variable if there exists a function f such that 
f (x) ≥ 0 and  for all x in interval −∞ < x < ∞ and such that, for any event E,

f (x) is called the probability density of the random variable X. The probability that X assumes any given 
value of x is equal to zero, and the probability that it assumes a value on the interval from a to b, including 
or excluding either endpoint, is equal to

Cumulative Distribution Function (Continuous Case)

The probability that the value of a random variable X is less than or equal to some real number x is 
defined as 

From the cumulative distribution, the density, if it exists, can be found from

From the cumulative distribution

Mathematical Expectation

Expected Value

Let X be a random variable with density f (x). Then the expected value of X, E (X), is defined to be
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if X is discrete and

if X is continuous. The expected value of a function g of a random variable X is defined as 

if X is discrete and 

if X is continuous.

Positional Notation

In our ordinary system of writing numbers, the value of any digit depends on its position in the number. 
The value of a digit in any position is ten times the value of the same digit one position to the right, or 
one-tenth the value of the same digit one position to the left. Thus, for example,

There is no reason that a number other than 10 cannot be used as the base, or radix, of the number 
system. In fact, bases of 2, 8, and 16 are commonly used in working with digital computers. When the 
base used is not clear from the context, it is usually indicated as a parenthesized subscript or merely as 
a subscript. Thus,

Change of Base

In this section, it is assumed that all calculations will be performed in base 10, since this is the only base 
in which most people can easily compute. However, there is no logical reason that some other base could 
not be used for the computations.

To convert a number from another base into base 10:
Simply write down the digits of the number, with each one multiplied by its appropriate positional 

value. Then perform the indicated computations in base 10, and write down the answer.
For examples, see the two examples in the previous section.
To convert a number from base 10 into another base:
The part of the number to the left of the point and the part to the right must be operated on separately. 

For the integer part (the part to the left of the point):

a. Divide the number by the new base, getting an integer quotient and remainder.
b. Write down the remainder as the last digit of the number in the new base.
c. Using the quotient from the last division in place of the original number, repeat the above two 

steps until the quotient becomes zero.

E X( ) xf x( ) xd
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∞
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E g X( )[ ] g x( ) f x( )⋅
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E g X( )[ ] g x( ) f x( )⋅ xd
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∞
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173.246 1 102 7 101×+× 3 2 1
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-----× 4 1

102
-------× 6 1

103
-------×+ + + +=

743 8( ) 7 82× 4 8 3  7 64 4 8 3+×+×=+×+ 448 32 3 483 10( )=+ += =

1011.101 2( ) 1 23 0 22 1 2 1 1 1
2
---×+ +×+×+× 0 1

4
---× 1 1

8
---×  11.625 10( )=+ +=
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For the fractional part (the part to the right of the point):

a. Multiply the number by the new base.
b. Write down the integral part of the product as the first digit of the fractional part in the new base.
c. Using the fractional part of the last product in place of the original number, repeat the above two 

steps until the product becomes an integer or until the desired number of places have been 
computed.

Examples

These examples show a convenient method of arranging the computations.

1. Convert 103.118(10) to base 8.

The calculation of the fractional part could be carried out as far as desired.
It is a non-terminating fraction that will eventually repeat itself.

The calculations may be further shortened by not writing down the multiplier and divisor at each step 
of the algorithm, as shown in the next example.

2. Convert 275.824(10) to base 5.

To convert from one base to another (neither of which is 10):

The easiest procedure is usually to convert first to base 10 and then to the desired base. However, there 
are two exceptions to this:
1. If a computational facility is possessed in either of the bases, it may be used instead of base 

10, and the appropriate one of the above methods may be applied.
2. If the two bases are different powers of the same number, the conversion may be done digit-

by-digit to the base that is the common root of both bases and then digit-by-digit back to the 
other base.

Example: Convert 127.653(8) to base 16. (For base 16, the letters A–F are used for the digits  
10(10)–15(10).)

The first step is to convert the number to base 2, simply by converting each digit to its binary equivalent:

8 103 7

8 12 4

1   147.074324...

103.118 10( ) 147.074324… 8( )=

5 275 0

55 0

11 1

2

.824

4.120

0.600

3.000

275.824 10( ) 2100.403 5( )=

127.653 8( ) 001  010  111  110  101  011 2( )⋅=
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Now by simply regrouping the binary number into groups of four binary digits, starting at the point, 
we convert to base 16:

Credits

Material in this section was reprinted from the following sources:

D.R. Lide, Ed., CRC Handbook of Chemistry and Physics, 73rd ed., Boca Raton, FL: CRC Press. 1992: 
International System of Units (SI), conversion constants and multipliers (conversion of temperatures), 
symbols and terminology for physical and chemical quantities, fundamental physical constants.

W.H. Beyer, Ed., CRC Standard Mathematical Tables and Formulae, 29th ed., Boca Raton, FL: CRC Press, 
1991: Greek alphabet, conversion constants and multipliers (recommended decimal multiples and 
submultiples, metric to English, English to metric, general, temperature factors), physical constants, 
series expansion, integrals, the Fourier transforms, numerical methods, probability, positional 
notation.

R.J. Tallarida, Pocket Book of Integrals and Mathematical Formulas, 2nd ed., Boca Raton, FL: CRC Press, 
1992: Elementary algebra and geometry; determinants, matrices, and linear systems of equations; 
trigonometry; analytic geometry; series; differential calculus; integral calculus; vector analysis; 
special functions; statistics; tables of probability and statistics; table of derivatives.

Associations and Societies 

American Concrete Institute (ACI)
PO Box 9094
Farmington Hills, MI 48333
Tel. # (248) 848-3700
Homepage: http://www.aci-int.net/ 

Founded in 1905, the American Concrete Institute (ACI) has grown into a chartered society with over 
20,000 members worldwide. The ACI is a technical and educational nonprofit society dedicated to 
improving the design, construction, manufacture, and maintenance of concrete structures. 

Among ACI’s 20,000 members are structural designers, architects, civil engineers, educators, contrac-
tors, concrete craftsmen and technicians, representatives of materials suppliers, students, testing labora-
tories, and manufacturers from around the world. The 83 national and international chapters provide 
the membership with opportunities to network with their peers and keep in tune with the activities of 
ACI International. 

Membership

Membership is open to individuals who work directly in, have an association with, or have an interest 
in concrete. All members are encouraged to participate in the activities of the ACI International, which 
include involvement on voluntary technical committees that develop ACI codes, standards, and reports. 
Various levels of membership exist to meet particular needs. Student memberships are available. 

Publications 

Concrete International. Published monthly. Covers institute, chapter, and industry news. Several technical 
articles following a specific theme appear in each issue. 

ACI Materials Journal. Published bimonthly. Describes research in materials and concrete, related ACI 
International standards, and committee reports. 

127.653 8( ) 101  0111  1101  0101  1 2( )⋅ 57.D58 16( )= =

http://www.aci-int.net/general/home.asp
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ACI Structural Journal. Published bimonthly. Includes technical papers on structural design and analysis, 
state-of-the-art reviews on reinforced and structural elements, and the use and handling of concrete. 

Other publications: ACI International makes available over 300 technical publication on concrete. Infor-
mation is also available in computer software and compact disc formats. A free 72-page publications 
catalog describing what ACI International has to offer is available.

Other Activities

ACI International provides technical information in the form of high-quality conventions, seminars, and 
symposia.

American Iron and Steel Institute (AISI)
1101 17th Street NW, Suite 1300
Washington, DC 20036
Tel. (202) 452-7100
Homepage: http://www.steel.org/ 

The American Iron and Steel Institute (AISI) was founded in 1908. The institute is a nonprofit association 
of North American companies engaged in the iron and steel industry. AISI comprises 43 member companies 
that produce the full range of steel mill products. Also included are iron ore mining companies and member 
companies that produce raw steel, including integrated, electric furnace, and reconstituted mills. Member 
companies account for more than two-thirds of the raw steel produced in the U.S., most of the steel 
manufactured in Canada, and nearly two-thirds of the flat-rolled steel products manufactured in Mexico.

AISI has 230 associate members, including customers who distribute, fabricate, process, or consume 
steel. Also included are companies and representatives of organizations that supply the steel industry 
with materials, equipment, and services, as well as individuals associated with educational or research 
organizations.

American National Standards Institute (ANSI)
Washington, DC, Headquarters
1819 L Street NW, 6th Fl.
Washington, DC 20036
Tel. (202) 293-8020
Fax. (202) 293-9287

New York City Office
25 West 43rd Street, 4th Floor
New York, NY, 10036
Tel. (212) 642-4900
Fax. (212) 398-0023
Homepage: http://www.ansi.org/ 
E-mail: info@ansi.org

Founded in 1918, the American National Standards Institute (ANSI) is a private, nonprofit membership 
organization that coordinates the U.S. voluntary consensus standards system and approves American 
National Standards. ANSI ensures that a single set of nonconflicting American National Standards are 
developed by ANSI-accredited standards developers and that all interests concerned have the opportunity 
to participate in the development process.

ANSI is the official U.S. representative to the International Accreditation Forum (IAF), the Interna-
tional Organization for Standardization (ISO), and, via the U.S. National Committee, the International 
Electrotechnical Commission (IEC). ANSI is also the U.S. member of the Pacific Area Standards Congress 
(PASC) and the Pan American Standards Commission (COPANT). 

http://www.steel.org/
http://www.ansi.org/
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Membership 

ANSI consists of approximately 1300 national and international companies, 30 government agencies, 
20 institutional members, and 250 professional, technical, trade, labor, and consumer organizations. 
ANSI offers no individual membership. For more information on membership, write to the Member 
Services Department at the New York Office; call (212) 642-4900; or e-mail membership@ansi.org. 

Publications 

ANSI Reporter. Published monthly. Newsletter that updates members on major national and international 
standards activities. It also provides information on the activities of the European standards bodies, CEN 
and CENELEC. 

Standards Action. Published biweekly. This newsletter outlines all national draft standards currently under 
consideration for approval as American National Standards and solicits comments from readers. Com-
ments are also solicited on regional, international, and foreign standards. These comments are then 
reviewed as part of the development process. 

Catalog of American National Standards. Published annually. Provides a complete listing of all ANSI-
approved American National Standards. Supplements are also published. 

American Railway Engineering and Maintenance-of-Way Association (AREMA)
8201 Corporate Drive, Suite 1125
Landover, MD 20785
Tel. (301) 459-3200
Fax. (301) 459-8077
Homepage: http://www.arema.org 

The American Railway Engineering and Maintenance-of-Way Association (AREMA) was formed on 
October 1, 1997, as the result of a merger of three engineering support associations, namely the American 
Railway Bridge and Building Association, the American Railway Engineering Association, and the Road-
masters and Maintenance of Way Association, along with functions of the Communications and Signal 
Division of the Association of American Railroads. The rich history of the predecessor organizations, 
each having over 100 years of service to the rail industry, is the legacy of AREMA.

Each of the four groups — Roadmasters and Maintenance of Way Association, American Railway 
Bridge and Building Association, American Railway Engineering Association, and Communications and 
Signal Division — that came together to form AREMA have, in their own way, built an excellent 
foundation upon which to base the new association, whose mission is the development and advancement 
of both technical and practical knowledge and recommended practices pertaining to the design, con-
struction, and maintenance of railway infrastructure.

Membership

The basic qualifications for membership are five years of experience in the profession of maintaining, 
operating, constructing, or locating railways. Graduation from a recognized college or university with a 
degree in engineering is being taken as the equivalent of three years of experience.

Publications

AREMA Manual for Railway Engineering comprises the work of the association’s committees. The manual 
is revised annually to make the latest in recommended practice information for railway engineering 
available to all interested parties. The Portfolio of Trackwork Plans is also compiled and updated in the 
same manner. 

American Society of Civil Engineers (ASCE)
International Headquarters
1801 Alexander Bell Drive
Reston, VA 20191-4400

http://www.arema.org
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Tel. 1-800-548-2723 (toll-free) / (703) 295-6300
Fax. (703) 295-6222 / (703) 295-6444 (fax-back)

Washington Office
1015 15th Street NW, Suite 600
Washington, DC 20005
Tel. (202) 789-2200
Fax. (202) 289-6797

Founded in 1852, the American Society of Civil Engineers (ASCE) is America's oldest national profes-
sional engineering society. The society has more than 115,000 individual members, including 6,500 
international members in 137 nations. Memberships consist of individual professional engineers rather 
than companies or organizations. 

ASCE is organized geographically into 21 district councils, 83 sections, 143 branches, and 246 student 
chapters and clubs. The society is governed by a 28-member board and is headquartered in the United 
Engineering Center in New York City. A Washington, DC, office is maintained for government relations. 

ASCE maintains the Civil Engineering Research Foundation to focus national attention and resources 
on the research needs of the civil engineering profession. In addition, there are 25 technical divisions 
and councils that foster the development and advancement of the science and practice of engineering. 
ASCE has marked infrastructure renewal as a top national priority. 

ASCE is the world’s largest publisher of civil engineering information, publishing over 63,000 pages 
in 1994. Nearly 42% of the society's yearly income is generated through publication sales. 

Membership 

Membership applicants must meet the requirements set in the constitution of the ASCE. Various levels 
of membership exist to meet particular needs. Student memberships are available to students who meet 
the requirements of the constitution. Various entrance fees and dues are required of the various levels 
of membership. Application materials may be requested by mailing the ASCE Membership Services 
Department, phoning 800-548-2723 (toll-free in the United States) or 703-295-6300 (internationally), 
faxing 703-295-6333, or e-mailing your request to memapp@asce.org.

Publications 

Civil Engineering. Published monthly. This is the society’s official magazine and is mailed to all members of 
ASCE. The magazine contains articles of current interest in the various fields of civil engineering, news of a 
professional nature, and reports on the activities of ASCE and its members. Independently prepared papers 
may be sent directly to the editor of Civil Engineering at 345 East 47th Street, New York, NY 10017-2398.

ASCE News. Published monthly. Mailed to all members without charge. It concentrates on the activities 
of ASCE and its members, with the intent of promoting interest and participation in society programs. 

Worldwide Projects. Published quarterly. A copublication of ASCE and Intercontinental Media, Inc., 
Westport, CT. Each issue provides engineers with articles giving insight into various topics related to 
international civil engineering projects and doing business outside the U.S. 

Journals published: Journal of Management in Engineering, published bimonthly, and Journal of Profes-
sional Issues in Engineering Education and Practice, published quarterly, present professional and technical 
problems of broad interest and implications. ASCE also publishes significant reports of the Professional 
Activities Committee and its constituent committees. 

Other publications: The society also publishes transactions; standards; engineer-, owner-, and construc-
tion-related documents; the publications information and indexes; and newsletters. A civil engineering 
database is also available. For inquiries on prices or to request a catalog or sample issues, e-mail 
marketing@asce.org; phone 1-800-548-2723, ext. 6251 (U.S.), or 703-295-6163 (international); fax 703-
295-6278; or mail American Society of Civil Engineers, Publications Marketing Department, 1801 Alex-
ander Bell Drive, Reston, VA 20191-4400.
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American Society for Testing and Materials (ASTM)
International Headquarters
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959
Tel. (610) 832-9500
Fax (610) 832-9555
Homepage: http://www.astm.org/ 

Founded in 1898, the American Society for Testing and Materials (ASTM) has grown into one of the 
largest voluntary standards development systems in the world. ASTM is a nonprofit organization that 
provides a forum for producers, users, ultimate consumers, and those having a general interest, such as 
representatives of government and academia, to meet on common ground and write standards for 
materials, products, systems, and services. From the work of 131 standard-writing committees, ASTM 
publishes standard test methods, specifications, practices, guides, classifications, and terminology. 
ASTM’s standards development activities encompass metals, paints, plastics, textiles, petroleum, con-
struction, energy, the environment, consumer products, medical services and devices, computerized 
systems, electronics, and many other areas. All technical research and testing are done voluntarily by 
more than 35,000 technically qualified ASTM members located throughout the world. 

Membership 

ASTM members pay an annual administrative fee of $75 for individual membership and $400 for an 
organizational membership. The only other costs involved are the time and travel expenses of the 
committee members and the donated use of members’ laboratory and research facilities. 

Publications 

Annual Book of ASTM Standards. A 70-volume set that includes standards and specs in the following 
subject areas: 

Iron and steel products 
Nonferrous metal products 
Metals test methods and analytical procedures
Construction 
Petroleum products, lubricants, and fossil fuels 
Medical devices and services 
General methods and instrumentation
Paints, related coatings, and aromatics
Textiles
Plastics 
Rubber 
Electrical insulation and electronics 
Water and environmental technology
Nuclear, solar, and geothermal energy 
General products, chemical specialties, and end-use products 

Discounts are applied when purchased as a complete set or when purchased by complete sections. Volumes 
may also be purchased individually.

Standardization News. Published monthly. 

Journals published: Journal of Testing and Evaluation; Cement, Concrete, and Aggregates; Geotechnical 
Testing Journal, Journal of Composites Technology and Research; and Journal of Forensic Sciences. 

ASTM also publishes books containing reports on state-of-the-art testing techniques and their possible 
applications. 

http://www.astm.org/
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American Water Works Association
Headquarters
6666 West Quincy Avenue
Denver, CO 80235 
Tel. (303) 794-7711
Fax. (303) 794-7310 

Government Affairs Office 
1401 New York Avenue NW, Suite 640 
Washington, DC 20005 
Tel. (202) 628-8303
Fax. (202) 628-2846 
Homepage: http://www.awwa.org/ 

The American Water Works Association (AWWA) was established in 1881 by 22 dedicated water supply 
professionals. Membership has grown to more than 54,000 individuals and organizations. AWWA is an 
international, nonprofit, scientific, and educational association dedicated to improving drinking water 
for people everywhere. Today, AWWA has grown to be the largest organization of water supply profes-
sionals in the world, boasting members from virtually every country. 

AWWA was formed to promote public health, safety, and welfare through the improvement of the 
quality and quantity of water delivered to the public and through the development of public understand-
ing. AWWA also takes an active role in shaping the water industry’s direction through research, partici-
pation in legislative activities, development of products, procedural standards, and manuals of practice, 
and it educates the public on water issues to promote a spirit of cooperation between consumers and 
buyers. 

Membership 

Listed under individual memberships are active, affiliate, and student. Organization memberships include 
utility, municipal service subscriber, small water system, associate, consultant, contractor, technical ser-
vice, and manufacturer’s agent, distributor, or representative. The association is governed by a board of 
directors that establishes policy for the overall management and direction of association affairs. 

Publications 

AWWA is the world’s major publisher of drinking water information. Its publications cover just about 
every area of interest in the water supply field. More than 500 titles are offered, covering all aspects of 
water resources, water quality, treatment and distribution, utility management, and employee training 
and safety. 

Civil Engineering Research Foundation (CERF)
2131 K Street NW, Suite 700
Washington, DC 20037
Tel. (202) 785-6420
Fax. (202) 833-2604
Homepage: http://www.cerf.org/ 

The Civil Engineering Research Foundation (CERF) was created by the American Society of Civil Engi-
neers and began operation in 1989 to advance the civil engineering profession through research. CERF 
is an industry-guided research organization that serves as a critical catalyst to help the design and 
construction industry and the civil engineering profession expedite the transfer of research results into 
practice through cooperative national programs. CERF integrates the efforts of industry, government, 
and academia in order to implement research that is beyond the capabilities of any single organization. 
CERF is an independent, nonprofit organization but remains affiliated with ASCE. 

http://www.awwa.org/
http://www.cerf.org/
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Council on Tall Buildings and Urban Habitat 
Lehigh University 
117 ATLSS Drive
Bethlehem, PA 18015 
Tel. (215) 758-3515
Fax (215) 758-4522 
Homepage: http://www.lehigh.edu/~inctbuh/ 
E-mail: inctbuh@lehigh.edu

The Council on Tall Buildings and Urban Habitat is an international organization sponsored by engi-
neering, architectural, and planning professionals. The council was founded in 1969 and was known as 
the Joint Committee on Tall Buildings until the name was changed in 1976 to its present form. 

The council was established to study and report on all aspects of the planning, design, construction, 
and operation of tall buildings. The council is also concerned with the role of tall buildings in the urban 
environment and their impact thereon. However, the council is not an advocate for tall buildings per se, 
but in those situations in which they are viable, the council seeks to encourage the use of the latest 
knowledge in their implementation. 

Membership 

Membership is available to associations, commercial organizations, individual members, and students. 
Membership is available to students at the rate of $10 per year. Membership fees vary for associations, 
commercial organizations, and individuals. 

Publications 

A major focus of the council is the publication of a comprehensive monograph series for use by those 
responsible for tall building planning and design. The original five-volume Monograph on the Planning 
and Design of Tall Buildings was released between 1978 and 1981. This comprehensive source of tall 
building information is the only such reference tool now available to the high-rise specialist. The volumes 
are Planning and Environmental Criteria for Tall Buildings, Tall Building Systems and Concepts, Tall Building 
Criteria and Loading, Structural Design of Tall Street Buildings, and Structural Design of Tall Concrete and 
Masonry Buildings. These volumes are available as a set or sold separately. Updated monographs are 
continually added to the series in order to keep information current. 

Structural Stability Research Council
Headquarters
University of Florida
Department of Civil and Coastal Engineering
345 Weil Hall, PO Box 116580
Gainesville, FL 32611-6580
Tel. (352) 846-3874, ext. 1424
Fax. (352) 846-3978
Homepage: http://www.ce.ufl.edu/~ssrc/ 
Email: ssrc@ce.ufl.edu 

The Structural Stability Research Council (formerly the Column Research Council) was founded in 1944 
to review and resolve the conflicting opinions and practices that existed at the time with respect to 
solutions to stability problems and to facilitate and promote economical and safe design. Now, more 
than 50 years later, the council has broadened its scope within the field of structural stability, has become 
international in character, and continues to seek solutions to stability problems. 

http://www.lehigh.edu/~inctbuh/
http://www.ce.ufl.edu/~ssrc/
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Membership 

Various levels of membership exist for individuals. Organizations, companies, and firms concerned with 
investigation and design of metal and composite structures are invited by the council to become sponsors, 
participating organizations, participating companies, or participating firms. 

Publications 

The council maintains a library at its headquarters. Material from the library is available on request. 

Transportation Research Board (TRB) 
Cecil and Ida Green Building 
2001 Wisconsin Avenue NW
Washington, DC 20007 
Tel. (202) 334-2934
Fax (202) 334-2003 
Homepage: http://www.nas.edu/trb/ 

The Transportation Research Board (TRB) is a unit of the National Research Council, which serves the 
National Academy of Sciences and the National Academy of Engineering. The board’s purpose is to 
stimulate research concerning the nature and performance of transportation systems, to disseminate the 
information produced by the research, and to encourage the application of appropriate research findings. 
The board’s program is carried out by more than 330 committees, task forces, and panels composed of 
more than 3900 administrators, engineers, social scientists, attorneys, educators, and others concerned 
with transportation; they serve without compensation.

The program is supported by state transportation and highway departments, modal administrations 
of the U.S. Department of Transportation, and others interested in the development of transportation. 

In November 1920, after a series of preliminary meetings and conferences, the National Research 
Council created the Advisory Board on Highway Research. Four years later, the name was changed to 
the Highway Research Board. During the late 1960s, the Highway Research Board expanded its scope to 
all modes of transportation. The name was again changed in 1974 to the Transportation Research Board 
to recognize its increased emphasis on a broadened approach to transportation problems and needs. 

Today the Transportation Research Board devotes attention to all factors pertinent to the understand-
ing, design, and function of systems for the safe and efficient movement of people and goods, including 
the following: 

• Planning, design, construction, operation, safety, and maintenance of transportation facilities and 
their components 

• Economics, financing, and administration of transportation facilities and services 

• Interaction of transportation systems with one another and with the physical, economic, and social 
environment that they are designed to serve 

Publications 

One of the most important activities of the Transportation Research Board is the dissemination of current 
research results. The mainstay of the TRB publications program is the Transportation Research Record 
series. This series consists primarily of the papers delivered at the TRB annual meeting by authors from 
all over the world.

Ethics

The following code of ethics was adopted by the American Society of Civil Engineers on September 25, 
1976. The code of ethics became effective on January 1, 1977. The ASCE has since amended this code on 
October 25, 1980, and April 17, 1993. The code of ethics shown below is in the most recent amended form.

http://www.nas.edu/trb/
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The ASCE adopted the fundamental principles of the ABET Code of Ethics of Engineers as accepted 
by the Accreditation Board for Engineering and Technology, Inc. (ABET).

Code of Ethics1

Fundamental Principles

Engineers uphold and advance the integrity, honor and dignity of the engineering profession by:

1. using their knowledge and skill for the enhancement of human welfare;
2. being honest and impartial and serving with fidelity the public, their employers and clients;
3. striving to increase the competence and prestige of the engineering profession; and
4. supporting the professional and technical societies of their disciplines.

Fundamental Canons

1. Engineers shall hold paramount the safety, health and welfare of the public in the performance 
of their professional duties.

2. Engineers shall perform services only in areas of their competence.
3. Engineers shall issue public statements only in an objective and truthful manner.
4. Engineers shall act in professional matters for each employer or client as faithful agents or trustees, 

and shall avoid conflicts of interest.
5. Engineers shall build their professional reputation on the merit of their services and shall not 

compete unfairly with others.
6. Engineers shall act in such a manner as to uphold and enhance the honor, integrity and dignity 

of the engineering profession.
7. Engineers shall continue their professional development throughout their careers, and shall pro-

vide opportunities for the professional development of those engineers under their supervision.

Guidelines to Practice Under the Fundamental Canons of Ethics

CANON 1.  Engineers shall hold paramount the safety, health and welfare of the public in the perfor-
mance of their professional duties.

a. Engineers shall recognize that the lives, safety, health and welfare of the general public are depen-
dent upon engineering judgments, decisions and practices incorporated into structures, machines, 
products, processes and devices.

b. Engineers shall approve or seal only those design documents, reviewed or prepared by them, which 
are determined to be safe for public health and welfare in conformity with accepted engineering 
standards.

c. Engineers whose professional judgment is overruled under circumstances where the safety, health 
and welfare of the public are endangered, shall inform their clients or employers of the possible 
consequences.

d. Engineers who have knowledge or reason to believe that another person or firm may be in violation 
of any of the provisions of Canon 1 shall present such information to the proper authority in 
writing and shall cooperate with the proper authority in furnishing such further information or 
assistance as may be required.

e. Engineers should seek opportunities to be of constructive service in civic affairs and work for the 
advancement of the safety, health and well-being of their communities.

f. Engineers should be committed to improving the environment to enhance the quality of life.

1Published with permission of the American Society of Civil Engineers.
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CANON 2.  Engineers shall perform services only in areas of their competence.

a. Engineers shall undertake to perform engineering assignments only when qualified by education 
or experience in the technical field of engineering involved.

b. Engineers may accept an assignment requiring education or experience outside of their own fields 
of competence, provided their services are restricted to those phases of the project in which they 
are qualified. All other phases of such project shall be performed by qualified associates, consultants 
or employees.

c. Engineers shall not affix their signatures or seals to any engineering plan or document dealing 
with subject matter in which they lack competence by virtue of education or experience or to any 
such plan or document not reviewed or prepared under their supervisory control.

CANON 3.  Engineers shall issue public statements only in an objective and truthful manner.

a. Engineers should endeavor to extend the public knowledge of engineering, and shall not participate 
in the dissemination of untrue, unfair or exaggerated statements regarding engineering.

b. Engineers shall be objective and truthful in professional reports, statements or testimony. They 
shall include all relevant and pertinent information in such reports, statements or testimony.

c. Engineers, when serving as expert witnesses, shall express an engineering opinion only when it is 
founded upon adequate knowledge of the facts, upon a background of technical competence and 
upon honest conviction.

d. Engineers shall issue no statements, criticisms or arguments on engineering matters which are 
inspired or paid for by interested parties, unless they indicate on whose behalf the statements are 
made.

e. Engineers shall be dignified and modest in explaining their work and merit, and will avoid any 
act tending to promote their own interests at the expense of the integrity, honor and dignity of 
the profession.

CANON 4.  Engineers shall act in professional matters for each employer or client as faithful agents or 
trustees, and shall avoid conflicts of interest.

a. Engineers shall avoid all known or potential conflicts of interest with their employers or clients 
and shall promptly inform their employers or clients of any business association, interests or 
circumstances which could influence their judgment or the quality of their services.

b. Engineers shall not accept compensation from more than one party for services on the same 
project, or for services pertaining to the same project, unless the circumstances are fully disclosed 
to and agreed to by all interested parties.

c. Engineers shall not solicit or accept gratuities, directly or indirectly, from contractors, their agents 
or other parties dealing with their clients or employers in connection with work for which they 
are responsible.

d. Engineers in public service as members, advisors or employees of a governmental body or depart-
ment shall not participate in considerations or actions with respect to services solicited or provided 
by them or their organization in private or public engineering practice.

e. Engineers shall advise their employers or clients when, as a result of their studies, they believe a 
project will not be successful.

f. Engineers shall not use confidential information coming to them in the course of their assignments 
as a means of making personal profit if such action is adverse to the interests of their clients, 
employers or the public.

g. Engineers shall not accept professional employment outside of their regular work or interest 
without the knowledge of their employers.
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CANON 5.  Engineers shall build their professional reputation on the merit of their services and shall 
not compete unfairly with others.

a. Engineers shall not give, solicit or receive either directly or indirectly, any political contribution, 
gratuity or unlawful consideration in order to secure work, exclusive of securing salaried positions 
through employment agencies.

b. Engineers should negotiate contracts for professional services fairly and on the basis of demon-
strated competence and qualifications for the type of professional service required.

c. Engineers may request, propose or accept professional commissions on a contingent basis only 
under circumstances in which their professional judgments would not be compromised.

d. Engineers shall not falsify or permit misrepresentation of their academic or professional qualifi-
cations or experience.

e. Engineers shall give proper credit for engineering work to those to whom credit is due, and shall 
recognize the proprietary interests of others. Whenever possible, they shall name the person or 
persons who may be responsible for designs, inventions, writings or other accomplishments.

f. Engineers may advertise professional services in a way that does not contain misleading language 
or is in any other manner derogatory to the dignity of the profession. Examples of permissible 
advertising are as follows:

Professional cards in recognized, dignified publications, and listings in rosters or directories 
published by responsible organizations, provided that the cards or listings are consistent 
in size and content and are in a section of the publication regularly devoted to such 
professional cards.

Brochures which factually describe experience, facilities, personnel and capacity to render 
service, providing they are not misleading with respect to the engineer’s participation in 
projects described.

Display advertising in recognized dignified business and professional publications, providing 
it is factual and is not misleading with respect to the engineer’s extent of participation in 
projects described.

A statement of the engineers’ names or the name of the firm and statement of the type of 
service posted on projects for which they render services.

Preparation or authorization of descriptive articles for the lay or technical press, which are 
factual and dignified. Such articles shall not imply anything more than direct participation 
in the project described.

Permission by engineers for their names to be used in commercial advertisements, such as may 
be published by contractors, material suppliers, etc., only by means of a modest, dignified 
notation acknowledging the engineers’ participation in the project described. Such per-
mission shall not include public endorsement of proprietary products.

g. Engineers shall not maliciously or falsely, directly or indirectly, injure the professional reputation, 
prospects, practice or employment of another engineer or indiscriminately criticize another’s work.

h. Engineers shall not use equipment, supplies, laboratory or office facilities of their employers to 
carry on outside private practice without the consent of their employers.

CANON 6.  Engineers shall act in such a manner as to uphold and enhance the honor, integrity and 
dignity of the engineering profession.

a. Engineers shall not knowingly act in a manner which will be derogatory to the honor, integrity 
or dignity of the engineering profession or knowingly engage in business or professional practices 
of a fraudulent, dishonest or unethical nature.
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CANON 7.  Engineers shall continue their professional development throughout their careers, and shall 
provide opportunities for the professional development of those engineers under their supervision.

a. Engineers should keep current in their specialty fields by engaging in professional practice, par-
ticipating in continuing education courses, reading in the technical literature and attending pro-
fessional meetings and seminars.

b. Engineers should encourage their engineering employees to become registered at the earliest 
possible date.

c. Engineers should encourage engineering employees to attend and present papers at professional 
and technical society meetings.

d. Engineers shall uphold the principle of mutually satisfying relationships between employers and 
employees with respect to terms of employment, including professional grade descriptions, salary 
ranges and fringe benefits.
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