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International System of Units (SI)

The International System of Units (SI) was adopted by the 11th General Conference on Weights and
Measures (CGPM) in 1960. It is a coherent system of units built from seven SI base units, one for each
of the seven dimensionally independent base quantities: the meter, kilogram, second, ampere, kelvin,
mole, and candela, for the dimensions length, mass, time, electric current, thermodynamic temperature,
amount of substance, and luminous intensity, respectively. The definitions of the SI base units are given
below. The SI derived units are expressed as products of powers of the base units, analogous to the
corresponding relations between physical quantities but with numerical factors equal to unity.

In the International System there is only one SI unit for each physical quantity. This is either the
appropriate SI base unit itself or the appropriate SI derived unit. However, any of the approved decimal
prefixes, called SI prefixes, may be used to construct decimal multiples or submultiples of SI units.

It is recommended that only SI units be used in science and technology (with SI prefixes where
appropriate). Where there are special reasons for making an exception to this rule, it is reccommended
always to define the units used in terms of SI units. This section is based on information supplied by
TUPAC.

Definitions of SI Base Units

Meter — The meter is the length of path traveled by light in vacuum during a time interval of 1/299
792 458 of a second (17th CGPM, 1983).

Kilogram — The kilogram is the unit of mass; it is equal to the mass of the international prototype
of the kilogram (3rd CGPM, 1901).

Second — The second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the cesium-133 atom (13th CGPM,
1967).

Ampere — The ampere is that constant current which, if maintained in two straight parallel conduc-
tors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum,
would produce between these conductors a force equal to 2 X 107 newton per meter of length
(9th CGPM, 1948).

Kelvin — The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermody-
namic temperature of the triple point of water (13th CGPM, 1967).

Mole — The mole is the amount of substance of a system that contains as many elementary entities
as there are atoms in 0.012 kilogram of carbon-12. When the mole is used, the elementary entities
must be specified and may be atoms, molecules, ions, electrons, or other particles, or specified
groups of such particles (14th CGPM, 1971).

Examples of the use of the mole:
1 mol of H, contains about 6.022 X 10** H, molecules, or 12.044 x 10 H atoms
1 mol of HgCl has a mass of 236.04 g
1 mol of Hg,Cl, has a mass of 472.08 g
1 mol of Hg% has a mass of 401.18 g and a charge of 192.97 kC
1 mol of Fe,,,S has a mass of 82.88 g
1 mol of e~ has a mass of 548.60 g and a charge of —96.49 kC
1 mol of photons whose frequency is 10'* Hz has energy of about 39.90 kJ

Candela — The candela is the luminous intensity, in a given direction, of a source that emits
monochromatic radiation of frequency 540 x 10'? hertz and that has a radiant intensity in that
direction of (1/683) watt per steradian (16th CGPM, 1979).
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Names and Symbols for the SI Base Units

Physical Quantity Name of ST Unit  Symbol for SI Unit
Length Meter m

Mass Kilogram kg

Time Second s

Electric current Ampere A
Thermodynamic temperature Kelvin K

Amount of substance Mole mol
Luminous intensity Candela od

SI Derived Units with Special Names and Symbols

Name of Symbol for Expression in
Physical Quantity SI Unit SI Unit Terms of SI Base Units
Frequency ! Hertz Hz s
Force Newton N m kg s
Pressure, stress Pascal Pa N m~ = nr'! kg s?
Energy, work, heat Joule ] N m = n? kg s
Power, radiant flux Watt w Jst'=nfkgs?
Electric charge Coulomb C As
Electric potential, Volt \Y% JC' = m? kg s3A!

electromotive force

Electric resistance Ohm Q VA = kg sPA?
Electric conductance Siemens S Q' = nr? kg! $A?
Electric capacitance Farad F C V- =m?kg!sA?
Magnetic flux density Tesla T Vs nr? = kg s?A™!
Magnetic flux Weber Wb Vs = n? kg s2A"!
Inductance Henry H V A's =nt kg s?A>
Celsius temperature? Degree Celsius °C K
Luminous flux Lumen Im cd sr
Illuminance Lux Ix cd sr nr?
Activity (radioactive) Becquerel Bq s
Absorbed dose (of radiation) ~ Gray Gy Jkg! =m?s?
Dose equivalent Sievert Sv Jkg™! = m? 52
(dose equivalent index)
Plane angle Radian rad I=mmn!
Solid angle Steradian st I=m?m?
! For radial (circular) frequency and for angular velocity, the unit rads !, or simply s,

should be used, and this may not be simplified to Hz. The unit Hz should be used only
for frequency in the sense of cycles per second.
2 The Celsius temperature 0 is defined by the equation:

06/°C = T/K=273.15

The SI unit of Celsius temperature interval is the degree Celsius, °C, which is equal to the
kelvin, K. °C should be treated as a single symbol, with no space between the ° sign and
the letter C. (The symbol °K, and the symbol °, should no longer be used.)
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Units in Use Together with the SI

These units are not part of the SI, but it is recognized that they will continue to be used in appropriate
contexts. SI prefixes may be attached to some of these units, such as milliliter, ml; millibar, mbar;
megaelectronvolt, MeV; and kilotonne, ktonne.

Physical

Quantity Name of Unit ~ Symbol for Unit Value in SI Units
Time Minute min 60 s

Time Hour h 3600 s

Time Day d 86 400 s
Planeangle ~ Degree ° (11/180) rad
Planeangle Minute ! (11/10 800) rad
Planeangle Second " (11/648 000) rad
Length Angstrom'! A 1071 m

Area Barn b 10728 m?

Volume Liter L L dm® =10 m??
Mass Tonne t Mg = 10° kg
Pressure Bar! bar 10° Pa = 10° N m>
Energy Electronvolt 2 eV (=exV) =1.60218 x 109 ]
Mass Unifiedatomic  u (= m,(?C)/12) = 1.66054 x 10?7 kg

mass unit>?

! The &ngstrom and the bar are approved by CIPM for “temporary use with
SI units,” until CIPM makes a further recommendation. However, they
should not be introduced where they are not used at present.

2 The values of these units in terms of the corresponding SI units are not
exact, since they depend on the values of the physical constantse (for the
electronvolt) and N, (for the unified atomic mass unit), which are deter-
mined by experiment.

> The unified atomic mass unit is also sometimes called the dalton, with
symbol Da, although the name and symbol have not been approved by
CGPM.

Conversion Constants and Multipliers

Recommended Decimal Multiples and Submultiples

Multiples and Multiples and
Submultiples ~ Prefixes ~ Symbols Submultiples  Prefixes Symbols
10 exa E 10! deci d
10 peta P 102 centi c
10*2 tera T 107 milli m
10° giga G 10-° micro M (Greek mu)
10° mega M 107 nano n
103 kilo k 1012 pico p
10? hecto h 1071 femto f
10 deca da 10718 atto a
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Conversion Factors — Metric to English

To obtain Multiply By

Inches Centimeters 0.3937007874

Feet Meters 3.280839895
Yards Meters 1.093613298

Miles Kilometers 0.6213711922
Ounces Grams 3.527396195 x 1072
Pounds Kilograms 2.204622622
Gallons (U.S. liquid) Liters 0.2641720524

Fluid ounces
Square inches
Square feet
Square yards
Cubic inches
Cubic feet
Cubic yards

Milliliters (cc)
Square centimeters
Square meters
Square meters
Milliliters (cc)
Cubic meters
Cubic meters

Conversion Factors — English to Metric*

* Boldface numbers are exact; others are given to ten significant figures where so indicated by the multiplier factor.

3.381402270 x 1072
0.1550003100
10.76391042
1.195990046
6.102374409 x 1072
35.31466672
1.307950619

To obtain Multiply By
Microns Mils 254
Centimeters Inches 2.54

Meters Feet 0.3048
Meters Yards 0.9144
Kilometers Miles 1.609344
Grams Ounces 28.34952313
Kilograms Pounds 0.45359237
Liters Gallons (U.S. liquid) 3.785411784

Millimeters (cc)
Square centimeters
Square meters
Square meters
Milliliters (cc)
Cubic meters
Cubic meters

Fluid ounces
Square inches
Square feet
Square yards
Cubic inches
Cubic feet
Cubic yards

Conversion Factors — General*

29.57352956
6.4516
0.09290304
0.83612736
16.387064
2.831684659 x 102
0.764554858
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To obtain Multiply By
Atmospheres Feet of water @ 4°C 2.950 x 102
Atmospheres Inches of mercury @ 0°C  3.342 x 107
Atmospheres Pounds per square inch 6.804 x 102
BTU Foot-pounds 1.285 x 107
BTU Joules 9.480 x 10~
Cubic feet Cords 128

Degree (angle) Radians 57.2958
Ergs Foot-pounds 1.356 x 107
Feet Miles 5280

Feet of water @ 4°C Atmospheres 33.90
Foot-pounds Horsepower-hours 1.98 x 10°
Foot-pounds Kilowatt-hours 2.655 % 10°
Foot-pounds per min Horsepower 3.3 %x10*
Horsepower Foot-pounds per sec 1.818 x 107
Inches of mercury @ 0°C ~ Pounds per square inch 2.036



To obtain Multiply By

Joules BTU 1054.8
Joules Foot-pounds 1.35582
Kilowatts BTU per min 1.758 x 1072
Kilowatts Foot-pounds per min 2.26 x 107
Kilowatts Horsepower 0.745712
Knots Miles per hour 0.86897624
Miles Feet 1.894 x 10
Nautical miles Miles 0.86897624
Radians Degrees 1.745 x 1072
Square feet Acres 43560
Watts BTU per min 17.5796

* Boldface numbers are exact; others are given to ten significant figures where so indicated by the multiplier factor.

Temperature Factors
°F = 9/5(°C) + 32
Fahrenheit temperature = 1.8 (temperature in kelvins) — 459.67
°C = 5/9[(°F) —32]

Celsius temperature = temperature in kelvins — 273.15
Fahrenheit temperature = 1.8 (Celsius temperature) + 32

Conversion of Temperatures

From To
°Celsius °Fahrenheit tp = (tc*x1.8) +32
Kelvin Ty = tc+273.15
°Rankine Ty = (tc+273.15) x 18
°Fahrenheit °Celsius tc = %
Kelvin T = 232157315
1.8
°Rankine Ty = tp +459.67
Kelvin °Celsius te = Tx—273.15
°Rankine Tp = Ty x 1.8
°Rankine °Fahrenheit tp = Tr—459.67
Kelvin Ty = L
1.8

Physical Constants

General

Equatorial radius of the earth = 6378.388 km = 3963.34 miles (statute).
Polar radius of the earth = 6356.912 km = 3949.99 miles (statute).
1 degree of latitude at 40° = 69 miles.
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1 international nautical mile = 1.15078 miles (statute) = 1852 m = 6076.115 ft.
Mean density of the earth = 5.522 g/cm® = 344.7 1b/ft’.

Constant of gravitation (6.673 £ 0.003) x 10® cm? gm's2.

Acceleration due to gravity at sea level, latitude 45° = 980.6194 cm/s? = 32.1726 ft/s%.
Length of seconds pendulum at sea level, latitude 45° = 99.3575 cm = 39.1171 in.

1 knot (international) = 101.269 ft/min = 1.6878 ft/s = 1.1508 miles (statute)/h.

1 micron = 10~* cm.

1 angstrom = 10-8 cm.

Mass of hydrogen atom = (1.67339 + 0.0031) x 10* g.

Density of mercury at 0°C = 13.5955 g/ml.

Density of water at 3.98°C = 1.000000 g/ml.

Density, maximum, of water, at 3.98°C = 0.999973 g/cm’.

Density of dry air at 0°C, 760 mm = 1.2929 g/.

Velocity of sound in dry air at 0°C = 331.36 m/s = 1087.1 ft/s.

Velocity of light in vacuum = (2.997925 £ 0.000002) x 10'° cm/s.

Heat of fusion of water 0°C = 79.71 cal/g.

Heat of vaporization of water 100°C = 539.55 cal/g.

Electrochemical equivalent of silver = 0.001118 g/s international amp.

Absolute wavelength of red cadmium light in air at 15°C, 760 mm pressure = 6438.4696 A.
Wavelength of orange-red line of krypton 86 = 6057.802 A.

7w Constants

7T = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37511
1/ 1= 0.31830 98861 83790 67153 77675 26745 02872 40689 19291 48091

T = 9.8690 44010 89358 61883 44909 99876 15113 53136 99407 24079
log, 7T = 1.14472 98858 49400 17414 34273 51353 05871 16472 94812 91531
log,,7T = 0.49714 98726 94133 85435 12682 88290 89887 36516 78324 38044

0g104/21 = 0.39908 99341 79057 52478 25035 91507 69595 02099 34102 92128

Constants Involving e

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69996

1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458 11131 03177
¢’ = 7.38905 60989 30650 22723 04274 60575 00781 31803 15570 55185
M = log,,e = 0.43429 44819 03251 82765 11289 18916 60508 22943 97005 80367

/M = log,10 = 2.30258 50929 94045 68401 79914 54684 36420 76011 01488 62877
log,(M = 9.63778 43113 00536 78912 29674 98645 — 10

Numerical Constants

M2 = 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37695
32 = 1.25992 10498 94873 16476 72106 07278 22835 05702 51464 70151
log,2 = 0.69314 71805 59945 30941 72321 21458 17656 80755 00134 36026
0g02 = 0.30102 99956 63981 19521 37388 94724 49302 67881 89881 46211
M3 = 1.73205 08075 68877 29352 74463 41505 87236 69428 05253 81039
33 = 1.44224 95703 07408 38232 16383 10780 10958 83918 69253 49935
log,3 = 1.09861 22886 68109 69139 52452 36922 52570 46474 90557 82275
0g193 = 0.47712 12547 19662 43729 50279 03255 11530 92001 28864 19070

© 2003 by CRC PressLLC



Symbols and Terminology for Physical
and Chemical Quantities

Name Symbol Definition SI unit
Classical Mechanics
Mass m kg
Reduced mass u W =mm,/(m, +m,) kg
Density, mass density p p=m/V kg m~
Relative density d d=p/p® 1
Surface density Pa B p, = m/A kg m?
Specific volume v v=V/m=1/p m’ kg™
Momentum p p=mv kg m s!
Angular momentum, action L L=rxp Js
Moment of inertia L] =% mr? kg m?
Force F F=dp/dt =ma N
Torque, moment of a force T, (M) T=rxF N m
Energy E ]
Potential energy E,V,® E, = —J F s ]
Kinetic energy E,T,K E, = (1/2)mv* ]
Work W, w W=[F[lds ]
Hamilton function H H (q,p) ]
=1T(q, p) + V(q)
Lagrange function L L (g,4) )
=T(g,9) - V(q)
Pressure p,P p=FIA Pa, N m~
Surface tension Y, O y = dW/dA N m7, J m?
Weight G, (W,P) G=mg N
Gravitational constant G F = Gmm,/r? N m? kg
Normal stress a o =F/A Pa
Shear stress T T=F/A Pa
Linear strain, relative elongation g e e =Al/l 1
Modulus of elasticity, Young’s E E=o0le Pa
modulus
Shear strain \ y =Ax/d 1
Shear modulus G G=1y Pa
Volume strain, bulk strain ) 0 =AVIV, 1
Bulk modulus K K =-V, (dp/dV) Pa
Compression modulus n,u T, = N(dv/dz) Pas
Viscosity, dynamicviscosity, fluidity @ @®=1/n mkg!s
Kinematic viscosity \Y v =nlp m? st
Friction coefficient u, (f) Fice = WEoorm 1
Power P P = dw/dt w
Sound energy flux P, P, P =dE/dt w
Acoustic factors
Reflection factor p p =P, /P, 1
Acoustic absorption factor a, (a) a,=1-p 1
Transmission factor T T=P,/P, 1
Dissipation factor 9 d=0a,-T 1

Elementary Algebra and Geometry

Fundamental Properties (Real Numbers)

at+tb=>b+a Commutative Law for Addition

(a+b)+c=a+(b+c)  Associative Law for Addition
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a+0=0+a Identity Law for Addition

a+(—a) = (—a)+a = 0 Inverse Law for Addition

a(bc) = (ab)c Associative Law for Multiplication
oo - o - e
a=—= = ==a = 1,a#%0 Inverse Law for Multiplication
0o~ GH P
(a)(1) = (1)(a) = a Identity Law for Multiplication
ab = ba Commutative Law for Multiplication
a(b+c) = ab+ac Distributive Law

DIVISION BY ZERO IS NOT DEFINED

Exponents
For integers m and n

n_m n+m

a'a
a/a" = a"""
(aﬂ)m anm
(ab)” = a"b"
(a/b)" = a"/b"

1
AN

Fractional Exponents

ap/q - (al/q)P

where a'/ is the positive gth root of a if a > 0 and the negative gth root of a if a is negative and q is odd.
Accordingly, the five rules of exponents given above (for integers) are also valid if m and n are fractions,
provided a and b are positive.

Irrational Exponents

If an exponent is irrational, e.g., /2 , the quantity, such as ™, is the limit of the sequence, al4, a1, a'414, .. .

Operations with Zero
0" =0;a’= 1

Logarithms

If x, y, and b are positive and b # 1

log,(xy) = log,x+log,y
log,(x/y) = log,x—log,y
log,x” = plog,x
log,(1/x) = —log,x
log,b =1
log,1 =0 Note: b*" = x
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Change of Base (a # 1)
log, x = log,x log, a

Factorials
The factorial of a positive integer n is the product of all the positive integers less than or equal to the

integer #n and is denoted n!. Thus,

nl = 1020B0.0

Factorial 0 is defined: 0! = 1.

Stirling’s Approximation

lim (n/e)"J2m = n!

n - o

Binomial Theorem

For positive integer n

(x+y)n - xn+ nxn—ly_l_ n(n—l)xn—2y2+ n(n—l)(n—Z)xn—3y3+

n—1 n
51 3 et nxy' T +y

Factors and Expansion

(a+b)’ = a’+2ab+ 1V’
(a=b)’ = a’=2ab+ b’
(a+b) = @’ +3a°b+3ab’+ 1’
(a=b)’ = a’=3a’b+3ab’ =1’
(a’=b") = (a=b)(a+b)
(a’=b") = (a=b)(a’ +ab+ b))
(a’+ b)) = (a+b)(a" —ab+b)

Progression

An arithmetic progression is a sequence in which the difference between any term and the preceding term
is a constant (d):

a,a+d,a+2d,...,a+(n-1)d

If the last term is denoted [ [= a + (n—1)d], then the sum is
s = g(a +1)

A geometric progression is a sequence in which the ratio of any term to the preceding term is a constant r.
Thus, for n terms
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the sum is

Complex Numbers
A complex number is an ordered pair of real numbers (a, b).

Equality: (a,b) = (c,d) ifand onlyifa=cand b =d
Addition: (a,b) + (,d)=(a+c¢b+d)
Multiplication: (a, b)(c, d) = (ac — bd, ad + bc)

The first element (a, b) is called the real part; the second is the imaginary part. An alternate notation
for (a, b) is a + bi, where i = (-1, 0), and i = (0, 1) or 0 + 1i is written for this complex number as a
convenience. With this understanding, i behaves as a number, i.e., (2 — 31)(4 + 1) = 8 — 12i + 2i — 3i* =
11 — 10i. The conjugate of a + bi is a — bi and the product of a complex number and its conjugate is a +
b?. Thus, quotients are computed by multiplying numerator and denominator by the conjugate of the
denominator, as illustrated below:

2430 _ (4—2i)(2+3i) _ 14+8i _ 7+4i

4+2i  (4-20)(4+2i)) 20 10

Polar Form

The complex number x + iy may be represented by a plane vector with components x and y
x+iy = r(cosB+ isin6)

(see Figure 1). Then, given two complex numbers z, = r,(cos 8, + isin 0,) and z, = r, (cos 6, + isin 6,),
the product and quotient are

Product: 2,2, = rry[cos(6, + 6,) +isin(6, + 6,)]
Quotient:  z,/z, = (r,/r,)[cos(6,—6,) +isin(6, - 6,)]

Powers: Z" = [r(cosB+isinB)]" = r’[cos nO+ isin nO]
Roots: 27" = [r(cos@+isin6)]""

1/n 6+ k360 , .. O+k.360
r [cos + isin " }
n

, k=01,2,...,n-1

FIGURE 1 Polar form of complex number.
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Permutations

A permutation is an ordered arrangement (sequence) of all or part of a set of objects. The number of
permutations of #n objects taken r at a time is

p(n,r) = n(n=1)(n=-2)...(n—r+1)

n!
(n—r)!

A permutation of positive integers is “even” or “odd” if the total number of inversions is an even
integer or an odd integer, respectively. Inversions are counted relative to each integer j in the permutation
by counting the number of integers that follow j and are less than j. These are summed to give the total

number of inversions. For example, the permutation 4132 has four inversions: three relative to 4 and
one relative to 3. This permutation is therefore even.

Combinations
A combination is a selection of one or more objects from among a set of objects regardless of order. The

number of combinations of n different objects taken r at a time is

P(n,r) _ n!
h rl(n—r)!

C(n,r) =

Algebraic Equations

Quadratic
If ax? + bx + ¢ = 0, and a Z0, then roots are

_ —b + Jb* —4ac

x 2a

Cubic
To solve x* + bx? + cx + d = 0, let x = y — b/3. Then the reduced cubic is obtained:

Y 4+py+q=0

where p = ¢ — (1/3)b? and q = d — (1/3)bc + (2/27)b>. Solutions of the original cubic are then in terms
of the reduced cubic roots y,, y,, y5:

x =y —(1/3)b x, = y,—(1/3)b x; = y;—(1/3)b

The three roots of the reduced cubic are

(A)l/3 + (B)]/3

Y=
}/2 - W(A)]/3+ WZ(B)1/3
)/3 — WZ(A)1/3+ W(B)l/3

where

1 3,1 2
A= —=g+ [(1/27)p" + =
54 [(1727)p 14
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oo}
1

1 3,1 2
—=g— [(1/27 + -
54 [(1/27)p 11
W:—l';l./\/g’ sz_l_zl/\/g

When (1/27)p* + (1/4)4? is negative, A is complex; in this case A should be expressed in trigono-
metric form: A = r(cos 8 + i sin 0), where 0 is a first- or second-quadrant angle, as g is negative or
positive. The three roots of the reduced cubic are

2(r)"" cos(6/3)

1=
¥y, = 2(r)1/3cosE§+ 120%
¥y3 = 2(r)1/3cosE§+ 240‘%

Geometry

Figures 2 to 12 are a collection of common geometric figures. Area (A), volume (V'), and other measurable
features are indicated.

b b

FIGURE 2 Rectangle. A = bh. FIGURE 3 Parallelogram. A = bh.

b b

FIGURE 4 Triangle. A = 1/2 bh.

S
R
0
FIGURE 6 Circle. A = TR FIGURE 7 Sector of circle. FIGURE 8 Regular polygon of 1
circumference = 2TR; arc Agector = 112R? 65 Appent = sides. A = n/4 b? ctn TUn; R = b/2
length S = RO (0 in radians). 1/2R? (8 —sin 0). csc TUn.
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@
FIGURE 9 Right circular cylinder. V' FIGURE 10 Cylinder (or prism)
= TU R?h; lateral surface area = 2Tt Rh. with parallel bases. V = A/t.

(D

FIGURE 11 Right circul V= 1/3 TRM;
GU gt credfar cone / FIGURE 12 Sphere. V = 4/3 TIR;

lateral surface area = TRl = TR /R’ + K. surface area = 4TIR2.

Determinants, Matrices, and Linear Systems of Equations

Determinants

Definition. The square array (matrix) A, with # rows and # columns, has associated with it the determinant

ap  ap A1
det A = | % 9 Arp
anl anZ ann

a number equal to

Z( i)auazjask cee Ay

where i, j, k, ..., | is a permutation of the » integers 1, 2, 3, ..., n in some order. The sign is plus if the
permutation is even and is minus if the permutation is odd. The 2 x 2 determinant
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a; ap

dy Ap

has the value a,,a,, — a,,a,, since the permutation (1, 2) is even and (2, 1) is odd. For 3 x 3 determinants,
permutations are as follows:

1, 2, 3 even

1, 3, 2 odd

2, 1, 3 odd

2, 3 1 even

3, 1, 2 even

3, 2, 1 odd

Thus,

O 0
Otan - axn - ax[]

O O
0~ % Gxp - 4y
— D_alz + Ay - 433 O
dy Ay O U g
ta, - ay - a0
O 0

Ot ai - an - an [
0

0
0~ %s * 4xn - 43

ay dyp dps

as; ds  dsz

A determinant of order 7 is seen to be the sum of n! signed products.

Evaluation by Cofactors

Each element a; has a determinant of order (n — 1) called a minor (M), obtained by suppressing all
elements in row 7 and column j. For example, the minor of element a,, in the 3 X 3 determinant above is

a4

as;  ds;

i» denoted A, is defined as + M, where the sign is determined from i and j:

The cofactor of element a
— i+]
Ay = (-1) M;;

The value of the n X n determinant equals the sum of products of elements of any row (or column)
and their respective cofactors. Thus, for the 3 x 3 determinant

det A = aj A, +apAn,+ asA; (first row)
or
= a, A+ ay Ayt oas A, (first column)

etc.

Properties of Determinants

a. If the corresponding columns and rows of A are interchanged, det A is unchanged.
b. If any two rows (or columns) are interchanged, the sign of det A changes.
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c. If any two rows (or columns) are identical, det A = 0.
d. If A is triangular (all elements above the main diagonal equal to zero), A = a,, [d,, O... [h,,,:

a; 0
)y Ay
A Apy Ay Tt Gy

e. Ifto each element of a row or column there is added C times the corresponding element in another
row (or column), the value of the determinant is unchanged.

Matrices

Definition. A matrix is a rectangular array of numbers and is represented by a symbol A or [a]:

an  4ap Ayip
— a a a —
A = 21 22 2n [a’j]
aml amZ amn

The numbers a;; are termed elements of the matrix; subscripts i and j identify the element as the number
in row 7 and column j. The order of the matrix is m X n (“m by n”). When m = n, the matrix is square
and is said to be of order n. For a square matrix of order n, the elements a,,, a,,, ..., a,,, constitute the
main diagonal.

Operations

Addition. Matrices A and B of the same order may be added by adding corresponding elements, i.e.,
A+ B =[(a; + byl

Scalar multiplication. If A = [a;] and c is a constant (scalar), then cA = [ca;], that is, every element
of A is multiplied by c. In particular, (-1)A = - A = [~ a;],and A + (- A ) = 0, a matrix with all
elements equal to zero.

Multiplication of matrices. Matrices A and B may be multiplied only when they are conformable,
which means that the number of columns of A equals the number of rows of B. Thus, if A is m X
k and B is k % n, then the product C = AB exists as an m % n matrix with elements c; equal to the
sum of products of elements in row i of A and corresponding elements of column j of B:

k
Cij = Z ayby;

=1

For example, if

ay Ay ottt Ay by, by, e by, Cnn € Gy
ay Gy Oy by by - by, = €y €t Gy
Ay e bkl bkl bkn Cn1 Cm2 " Cun

then element ¢,, is the sum of products a, b,; + a,,b,, + ... + ayby,.
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Properties
A+B =B+A
A+(B+C) = (A+B)+C
(c;+)A = A+ A
c(A+B) = cA+¢B
c1(6,A) = (¢¢,)A
(AB)(C) = A(BC)
(A+B)(C) = AC+BC
AB# BA (in general)

Transpose

If A is an n X m matrix, the matrix of order m X n obtained by interchanging the rows and columns of
A is called the transpose and is denoted AT The following are properties of A, B, and their respective
transposes:

(ah" =4
(A+B)" = A"+B"
(cA)" = cA"
(AB)" = B'A"

A symmetric matrix is a square matrix A with the property A = AT

Identity Matrix

A square matrix in which each element of the main diagonal is the same constant a and all other elements
are zero is called a scalar matrix.

a 0 0
0 a O 0
0 0 a 0
o 0 0 - a

When a scalar matrix is multiplied by a conformable second matrix A, the product is aA, which is the
same as multiplying A by a scalar a. A scalar matrix with diagonal elements 1 is called the identity, or unit,
matrix and is denoted I. Thus, for any nth-order matrix A, the identity matrix of order # has the property

Al = JA = A

Adjoint
If A is an n-order square matrix and A; is the cofactor of element a;, the transpose of [A;] is called the
adjoint of A:

adjA = [A;]"

Inverse Matrix

Given a square matrix A of order n, if there exists a matrix B such that AB = BA = I, then B is called the
inverse of A. The inverse is denoted A~l. A necessary and sufficient condition that the square matrix A
have an inverse is det A Z 0. Such a matrix is called nonsingular; its inverse is unique and is given by
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_ dji A
A = adj
det A

Thus, to form the inverse of the nonsingular matrix A, form the adjoint of A and divide each element
of the adjoint by det A. For example,

1 0 2 —11 —-14 19
3 -1 1| has matrix of cofactors | 1 ) -5
4 5 ¢ 2 5 -1
—11 10 2
adjoint={_j4 5 |and determinant = 27
(19 -5 -1
Therefore,
o0 2
27 27 27
A=l 205
27 27 27
-
|27 27 27

Systems of Linear Equations

Given the system

anx Toapx, teeet anX, = b,
anx, t  apx, +t--+t  oa,x, = b,
anl'xl + ar12x2 +oe At annxn = bn

a unique solution exists if det A Z 0, where A is the n X n matrix of coefficients (a;].

Solution by Determinants (Cramer’s Rule)

by ap - oay,
bn (%) A
ay by oay oay,
x, = a,, bz sdet A
A bn Ap3 A
det A,
X =
det A

where A, is the matrix obtained from A by replacing the kth column of A by the column of bs.
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Matrix Solution

The linear system may be written in matrix form AX = B, where A is the matrix of coefficients [a;] and
X and B are

If a unique solution exists, det A Z 0; hence, A~ exists and
X =A"'B

Trigonometry

Triangles

In any triangle (in a plane) with sides a, b, and ¢ and corresponding opposite angles A, B, and C,

ey = e = e (Law of Sines)

a’ = b+ —2cheos A (Law of Cosines)

1
a+bh tanz(A+B)

a=b tan%(A—B)

siniA = /W where s = l(a+b+ c)
2 be 2

s(s—a)
be

1, _ [(s=b)(s=¢)
tanEA— _TS—;)__

Area = %bcsinA

(Law of Tangents)

Ns(s—a)(s=b)(s—c)

If the vertices have coordinates (x,, y,), (x,, ¥,), and (x;, y;), the area is the absolute value of the
expression

X oy 1
1
2% 1
X3 ys 1
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(n 0
e P(x,y)

(D) (Iv)

FIGURE 13 The trigonometric point. Angle A is taken to be positive when the rotation is counterclockwise and
negative when the rotation is clockwise. The plane is divided into quadrants as shown.

Trigonometric Functions of an Angle

With reference to Figure 13, P(x, ) is a point in either one of the four quadrants and A is an angle whose
initial side is coincident with the positive x-axis and whose terminal side contains the point P(x, y). The
distance from the origin P(x, y) is denoted by r and is positive. The trigonometric functions of the angle
A are defined as

sin A = sine A =y/r
cos A = cosine A = x/r
tan A = tangent A = y/x
ctn A = cotangent A = x/y
sec A = secant A =r/x
csc A = cosecant A = r/y

z-Transform and the Laplace Transform

When F(t), a continuous function of time, is sampled at regular intervals of period T, the usual Laplace
transform techniques are modified. The diagramatic form of a simple sampler, together with its associated
input-output waveforms, is shown in Figure 14.

Defining the set of impulse functions 9, () by

5.(1) = i 5(t—nT)

n=0

the input—output relationship of the sampler becomes

F(1) = F(r) 1(1)

iF(nT) (¢ —nT)

n=.0

While for a given F(t) and T the F*(t) is unique, the converse is not true.
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Sampler

F¥(t)

F@® F4(t)

| 1|

Fs the sampling frequency

—==

FIGURE 14

For function U(?), the output of the ideal sampler U*(¢) is a set of values U(kT), k=0, 1, 2, ..., that is,

Ul) = i U(t) 8 (t—kT)

k=0

The Laplace transform of the output is

L+ {U'(t)} = J':e‘“ U(H)dt = J':e‘“z U(t)S(t—kT) dt
K=o
= ie_SkTU(kT)
K=o
1 sin A
tan A = =
an ctn A cos A
1
A=
¢ sin A
1
A=
se¢ cos A
ctn A = 1 _ cos A

tan A sin A
sin®A+cos’ A = 1
1+tan’ A = sec’A
l1+ctn® A = csc’A
sin(A+B) = sin A cos B+ cos A sin B
cos(AxB) = cos A cos BFsin A sin B

tan A * tan B

tan(At+B) = ——M—M—
an( ) 1Ftan A tan B
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sin2A = 2sin A cos A
sin3A = 3sin A—4sin’ A
sin nA = 2sin(n—1)Acos A—sin(n—2)A
c0s2A = 2cos’A—1 = 1-2sin’A
cos3A = 4cos’A —3cos A

cos nA = 2cos(n—1)Acos A—cos(n—2)A

sin A + sin B

Zsin%(A + B)cos%(A—B)

sin A —sin B 2cos%(A+B)sin%(A—B)

cos A+ cos B = ZCOS%(A + B)cos%(A—B)

cos A—cos B = —Zsin%(A+B)sin%(A—B)

sin(A = B)
cos A cos B

tan Ax tan B =

ctn A+xctn B = iw
sin A sin B

sin Asin B = %cos(A—B) - %cos(A + B)

cos Acos B %cos(A—B)+%cos(A+B)

sin Acos B = %sin(A +B) + %sin(A—B)

A _ [1—cos A
sin = = + [———
2 2
A _ 1+ cos A
cos = = t [———
2 2
A _1—-cosA _ sinA _ [1—cos A
tan — = - = =
2 sin A 1+ cos A 1+ cos A

sin A = %(I—COSZA)

cos’A = %(1 + cos2A)
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sin’ A = }1(3sin A —sin3A)

cos’ A = i(cosSA+3cos A)

.. 1. — ..
sin ix = Ez(ex—ex) = isinh x
. —_ 1 X —X —_
cos ix = E(e +e7) = cosh x
. X —X
. i(e"—e .
tan ix = e—e) = itanh x
X —X
e te
+1 . .
" = e(cos y +isin y)

(cos x *isin x)" = cos nx *isin nx

Inverse Trigonometric Functions

The inverse trigonometric functions are multiple valued, and this should be taken into account in the
use of the following formulas.

A
sin x = cos A/ l—x

= tan = ctn
/ 2 X
1—x
_ -1 1 _ -
= sec = ¢sc -
2 X
1—x
. =1
= —sin (—x)
-1 <=1 2
cos X = sin 1—x
11— 1 X
= tan = ctn
2
x ANl—x
_ -11 _ -1 1
= sec - = csc
2
x ANl—x
= 1T—cos (—x)
tan 'x = ctn_ll
X
_ .- X _ 11
= sin = cos
A1+ X A1+ x
2
- 2 —iA 1+ X
= sec 'W1+x* = csc AT
X
= —tan”'(—x)
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0 Xq

1] v

FIGURE 15 Rectangular coordinates.

Analytic Geometry

Rectangular Coordinates

The points in a plane may be placed in one-to-one correspondence with pairs of real numbers. A common
method is to use perpendicular lines that are horizontal and vertical and intersect at a point called the
origin. These two lines constitute the coordinate axes; the horizontal line is the x-axis and the vertical
line is the y-axis. The positive direction of the x-axis is to the right, whereas the positive direction of the
y-axis is up. If P is a point in the plane, one may draw lines through it that are perpendicular to the x-
and y-axes (such as the broken lines of Figure 15). The lines intersect the x-axis at a point with coordinate
x, and the y-axis at a point with coordinate y,. We call x; the x-coordinate, or abscissa, and y, is termed
the y-coordinate, or ordinate, of the point P. Thus, point P is associated with the pair of real numbers
(x;, ¥,) and is denoted P(x;,, y;). The coordinate axes divide the plane into quadrants I, II, III, and IV.

Distance between Two Points; Slope

The distance d between the two points P,(x,, y,) and P,(x,, ,) is

d = A/(xz_xl)2 + ()’2_)’1)2

In the special case when P, and P, are both on one of the coordinate axes, for instance, the x-axis,

5

d = J(x,—x)

|, — x|

or on the y-axis,

[N}

d

=) = =yl

The midpoint of the line segment P, P, is

;X it g
O " 2 0
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Py

FIGURE 16 The angle of inclination o is the smallest angle measured counterclockwise from the positive x-axis to
the line that contains P,P,.

The slope of the line segment P,P,, provided it is not vertical, is denoted by m and is given by

2~ )1
m = Y2~y
X, =X

The slope is related to the angle of inclination a (Figure 16) by
m = tan o

Two lines (or line segments) with slopes m, and m, are perpendicular if

m, = —1/m,
and are parallel if m, = m,.
Equations of Straight Lines
A vertical line has an equation of the form
X =c

where (¢, 0) is its intersection with the x-axis. A line of slope m through point (x,, y;) is given by
y=yi = m(x—x))
Thus, a horizontal line (slope = 0) through point (x,, y,) is given by
y ="

A nonvertical line through the two points P,(x,, y,) and P,(x,, y,) is given by either

- D’z:)’lD(x_xl)

V=N
2T X

or
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FIGURE 17 Construction for normal form of straight-line equation.

- 72 :le(x—xz)

2T X

Y=Y

A line with x-intercept a and y-intercept b is given by

QIR

+% =1 (a#z0, b#0)

The general equation of a line is
Ax+By+C =0
The normal form of the straight-line equation is

x cosB+ysinf = p

where p is the distance along the normal from the origin and 81is the angle that the normal makes with
the x-axis (Figure 17).

The general equation of the line Ax + By + C = 0 may be written in normal form by dividing by
+.JA*+ B*, where the plus sign is used when C is negative and the minus sign is used when C is positive:

+ By +
Ax+By+ C -0
+JA*+ B’
so that
A . B
cosf = , sinf = ———
+JA*+ B’ +JA*+ B’
and
IC|

B JA+ B

Distance from a Point to a Line

The perpendicular distance from a point P(x,, y,) to the line Ax + By + C = 0 is given by

_Ax, +By,+ C

+JA*+ B’

d
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FIGURE 18 Parabola with vertex at (h, k). F identifies the focus.

2 2
FIGURE 19 Parabolas with y-axis as the axis of symmetry and vertex at the origin. (Left) y = I—p ; (right) y = —Af—p.

Circle

The general equation of a circle of radius r and center at P(x,, y,) is
(x_xl)z + ()’_J’l)z =7

Parabola

A parabola is the set of all points (x, y) in the plane that are equidistant from a given line called the
directrix and a given point called the focus. The parabola is symmetric about a line that contains the
focus and is perpendicular to the directrix. The line of symmetry intersects the parabola at its vertex
(Figure 18). The eccentricity e = 1.

The distance between the focus and the vertex, or vertex and directrix, is denoted by p (> 0) and leads
to one of the following equations of a parabola with vertex at the origin (Figures 19 and 20):

y = %} (opens upward)
2
y = _éf_p (opens downward)
2
x = %1.) (opens to right)
2
x = _Z_p (opens to left)
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X=-p

2

2
FIGURE 20 Parabolas with x-axis as the axis of symmetry and vertex at the origin. (Left) x = 4LP ; (right) x = —é .

FIGURE 21 Parabola with vertex at (h, k) and axis parallel to the x-axis.

For each of the four orientations shown in Figures 19 and 20, the corresponding parabola with vertex
(h, k) is obtained by replacing x by x — h and y by y — k. Thus, the parabola in Figure 21 has the equation

x—h = _()’ - k)z
4p
Ellipse

An ellipse is the set of all points in the plane such that the sum of their distances from two fixed points,
called foci, is a given constant 2a. The distance between the foci is denoted 2¢; the length of the major
axis is 2a, whereas the length of the minor axis is 2b (Figure 22) and

a= b +c
The eccentricity of an ellipse, e, is < 1. An ellipse with center at point (h, k) and major axis parallel to

the x-axis (Figure 23) is given by the equation

(=h) , =K _
2 2
a b
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————— 1
N !
// \\ Ib
7/ N
» X
F, O Fsy
i
= — =l
C

FIGURE 22 Ellipse. Since point P is equidistant from foci F, and F,, the segments F,P and F,P = a; hence,

a=Jb+c.

y
X=h
/_\
/ y:k
\
X
0

FIGURE 23 Ellipse with major axis parallel to the x-axis. F, and F, are the foci, each a distance ¢ from center (h, k).
An ellipse with center at (h, k) and major axis parallel to the y-axis is given by the equation (Figure 24)

=k, G ;Zh)z .,
a

Hyperbola (e > 1)

A hyperbola is the set of all points in the plane such that the difference of its distances from two fixed
points (foci) is a given positive constant denoted 2a. The distance between the two foci is 2¢ and that
between the two vertices is 2a. The quantity b is defined by the equation

2 2
b= AiNc—a

and is illustrated in Figure 25, which shows the construction of a hyperbola given by the equation

Q'R
[ AW

yz
— Z,_Z =1

When the focal axis is parallel to the y-axis, the equation of the hyperbola with center (h, k) (Figures 26
and 27) is

QL__)Z_(X__h_)_Z =1
a’ b’
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FIGURE 24 Ellipse with major axis parallel to the y-axis. Each focus is a distance ¢ from center (h, k).

Y
a
b c I
Fy Vi \ F>

0 X
|
|
|
|

DRy p—

FIGURE 25 Hyperbola. V,, V, = vertices; F, F, = foci. A circle at center 0 with radius ¢ contains the vertices and
illustrates the relation among a, b, and c. Asymptotes have slopes b/a and —b/a for the orientation shown.

If the focal axis is parallel to the x-axis and center (h, k), then

(x_—h)z (y_k)z =1
a’ b’

Change of Axes

A change in the position of the coordinate axes will generally change the coordinates of the points in the
plane. The equation of a particular curve will also generally change.
Translation

When the new axes remain parallel to the original, the transformation is called a translation (Figure 28).
The new axes, denoted x'and y', have origin 0’ at (h, k) with reference to the x- and y-axes.
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FIGURE 27 Hyperbola with center at (h, K). (sz)_ _(%)_ = 1; slopes of asymptotes +a/b.
a

Series

Bernoulli and Fuler Numbers

A set of numbers, By, B;, ..., B,, _, (Bernoulli numbers) and B,, B,, ..., B,, (Euler numbers), appears in
the series expansions of many functions. A partial listing follows; these are computed from the following
equations:
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————————————————— +———————
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|
|
|
FIGURE 28 Trandation of axes.
B, — 2n(2n—1)B +2n(2n—=1)(2n—-2)(2n— 3)B (1) =
2! 4l
and
2727 —1 2n—1)(2n—2)(2n =3 net
%Bnq = (2”_1)32%2_( ) 30 ) )an74+ -+ (1)

B, = 1/6 B, =1
B,=1/30 B, =5

B, = 1/42 B, = 61

B, = 1/30 B, = 1385
By = 5/66 By, = 50,521

=
I

691/2730 By, = 2,702,765
B, = 7/6 B,, = 199,360,981

Series of Functions

In the following, the interval of convergence is indicated; otherwise, it is all x. Logarithms are of base e.
Bernoulli and Euler numbers (B,, _, and B,,) appear in certain expressions.

n n— 1 f’l(f’l 1) n—=2 2 7’!(7’!—1)(1’1 2) n-=3 3

z ; e e

n! n—j_j
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bx b3x3
(a—bx)" = +--+----+......._+ (b2 <a’]
a a a’ a’
3
(1xx)" = li”x"'n(nzl_l)xzin(n_l);n_z)x + [x"<1]
(1£x)"= 1Fnx+ n(n; Dy gn(nt 13)|(n t2)0 [x*<1]
1
2 1 1 2 1B 3 1BF 4 5
1+x)" = l#-x——x"% _ + <1
(1) XTImO : [« <1]
1
T2 1 1B >_ 1B s, 1BHBLY 4 5
1+ T lFIx+—x%F + Fo... <1
(1£x) XIS FrE R O [ <1]
l 1 t L 1B 108 (5
Le?) = 1212 X 4 6 5y 2eq
(12x) 2 IO Im 2OisB [« <1]
(1xx)" = I1Fx+xXFX+X F+ o0 [x*<1]
(1+x) = 1F2x+3x Fa4x +5x" F--- [x2<1]
2 3 4
e = 1+x+——+2c— £+
20 31 4l
2 X4 x6 xs
TR
(x loga)® | (xloga)’
a = 1+xloga+ o) + 3 + .
logx = (x—l)—%(x—1)2+%(x_l)S_... [0<x<2]
_x—1 1= 17 117 1
1 =X 42 + = + ... [ >_}
8% = a0y 0 305D ;
- o[x—10 IDC—ID+IDC—1D+ } .
logx = 2| B+ 3HED [x> 0]
log(1+x) = x—%x2+%x3_ix4+ [ <1]
E,lll_;El = 2[x+?-)x + éx5+ %x7+ } [x2<1]
3 5
loggj—ct—ll% 2[ +1$+§%+..} [ >1]
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3 5 7

. x X X

= x—= 4+ =+ ..
e TR
xZ x4 x6

= —_——t -+ .
COS X 1 TR

3 5 7 2n0n2n -1
tanx = x+£+2x +17_x+ 27(2 1)By,_1x

315 315 (2n)!
ctn x = l_').c_x_a_zi ..... B—__znfl(zx)zn_...
3 45 945 (2n)x
_ 5" 61x° B,,x"
secx = 1+E+I+T+ et Q) + .
3 5 2n+1
cscCx = l+£+ /X +_31x + -..+2_......................_(2 —-1) . 2l
x 3! 305! 3! (2n+2)!
- X (108)x (1B H)x
sinT x = x+ =+ + +
6 (20t)5 (2067
tan” x = x—lx3+lx5_lx7+
3 5 7

m1 1 18 15
2 x 6x’ (2M)5x° (2HD6)7x

3 5 7
. x X, x
sinhx = x+ =+ =+ =+ ...
3l 51 71
P
= ]l =+ =+ =+ =+
cosh x 1 StatatE

3 5
tanhx = (2° - 1)2231% -(2'- 1)2433% +(2° - 1)2635%&| e

25 2 odp, 4 6., 6
ctnhx:l%+231x _ZB3X+2BSx O
x 2! 41

6! O

B,x*  Bx' B’
sechx = 1—-—-—-—-—2! + 2 A

3
cschx = l—(2—1)231£ +(2°-1)2B, X — ...
X 2! 4!

3 5 7
sinhx = x—1X 4 10Bx 10X |

23 2045 2467
3 5 7

tanh'x = x+ 2+ 2+ X4
3 5 7
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[x <1]

[+ <1]
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ctnh™ x = l+—13+ 15+~~ [x*>1]
X 3x" 5x
csch™'x = 1 1 + 108 1B [b . [x2>1]

X 2Bx 2080bx 20406 X

xe_'zdt = x—Lly+ x __x7 +
.L) 3 50 7[B!

Error Function

The following function, known as the error function, erf x, arises frequently in applications:

2
erf x = ij‘xe_t dt
Jrd°

The integral cannot be represented in terms of a finite number of elementary functions; therefore,
values of erf x have been compiled in tables. The following is the series for erf x.

2 x x x’
fx = =— —_ e P+ ...
e ﬁix 3 500 708l }

There is a close relation between this function and the area under the standard normal curve (Table 1
in the Tables of Probability and Statistics). For evaluation, it is convenient to use z instead of x; then erf
z may be evaluated from the area F(z) given in Table 1 by use of the relation

erf z = 2F(J/22)
Example
erf(0.5) = 2F[(1.414)(0.5)] = 2F(0.707)

By interpolation from Table 1, F(0.707) = 0.260; thus, erf(0.5) = 0.520.

Series Expansion

The expression in parentheses following certain of the series indicates the region of convergence. If not
otherwise indicated, it is to be understood that the series converges for all finite values of x.

Binomial

(x+y)' = "+ nx""y+ n(ny—l)xnfzyz_'_ n(n—lz)))'(n—2)xn73ya . (' <x)

2 3
(1+x)" = linx+n(n Il)x in(n—l)3(ln—2)x + oo etc, (*<1)

2 3

o +

(1+xx)" = 1Fnx+ nin ZIl)x :Fn(n+ 1)3('n+2)x + .- etc. (x*<1)
(1xx)" = 1Fx+ X F0+x Fx 4+ o (x*<1)
(1xx)7 = 1F2x+3x" F4x +5x" F6x° + - (x*<1)
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Reversion of Series

Let a series be represented by
_ 2 3 4 5 6
y = axtax +ax+ax+ ax’+ axt+ - (a, #0)
to find the coefficients of the series

X = A1J’+Az)’2+A3)’3+ A4)’4+

— _ _a _ 1 2
A= = A, = __i Ay = —(2d;, —ayay)
@ a |

1 2 3
Ay = —7(5“1‘12513 —aa,—5a;)

a,

1 2 2 2 4 3 2
As = =(6a,aa, + 3aia;+ 14a; —ayas —21a,a,a;)

a,

_ 1 3 3 3 4 22 2 2 5

Ag = —(7ajaya;s + Taja;a, + 84a,a,a; —a,a,— 28aya,a, — 28a,a,a; — 42a,)

a,

1 4 4 4 2 2 3 222 6 5
A; = ?(8111112616 + 8a,asas + 4a,a, + 120aja,a, + 180ajaya; + 132a, — a;a;

a,

3 2 3 3 3 4
—36a,a,as —72aja,a;a, —12a a5 —330a,a,a;)

Taylor

L. f(x) = f(a) + (x—a)f'(a) + (x;—!a)zf"(a) + (x g!a)3fm (a)

+ot (x;_!“)"f(")(a) + .- (Taylor’s series)
(Increment form)
2 fEerm) = [+ @+ o+ o+
= )+l () S )+ 5 ()

3. If flx) is a function possessing derivatives of all orders throughout the interval a = x = b, then
there is a value X, with a <X < b, such that

) = fta) + (-a) (o) + L= pr(ay +

G 00

hn—l

(n—=1)
+LpOGron),  b=a+ho<o<
n:

fla+ 1) = fla) + h"(@)+ o pria) + e 20 0(a)
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or

flx) = f(a)+(x—a)f'(a)+(x;_la)2f"(a)+ + (x—a)"" 1f( l)l(;ll)+R

where

_ f(n)[a+ le:(x_a)](x_a)na 0<06<1

The above forms are known as Taylor’s series with the remainder term.

4. Taylor’s series for a function of two variables:

J _ 20 f(x, (?2 , 20 f(x,
and EL_ ¥ k—gf(x, ) = h _f;;y) + 2hk gi’;yy) vk f;;“/)pp

etc., and if %1—+k dmf(x )

with the bar and subscripts means that after differentiation we

x a
=b

are to replace x by a and y by b,

then fla+h b+k) = f(a, b)+a1—+k—— + .
=
AL -
MacLaurin
n—1)
) = 0)+ 5" @)+ 5 @)+ 5 @4 e D,
where
n (n)
- X189 g<p<y
n!
Exponential
e=1+ie Loy dy
12t 31 4l
XX %
e = 1+x+5+§+ Z+-~~ (all real values of x)
M (xlog, a)’ (xlog, a)’
a = l+xloga+ Zg! + 3g! +
& = + + (x—a) a)’ (x a)
1 (x—a) 5 3
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Logarithmic

log, x
8e x 24 x 34 x

log, x

x+1 30+ 50+ 0

log, x = Z{x_l e (N U N

1 1 LAy ..

— 2 3
loge(l +x) = X=X FIx —ox

log (n+1)—log (n—1) = 2|:l

2 3
Bl SR Y b [N lDC]__lﬂ + ..

(x=1)=3(x=1)"+3(x=1)" =

+...1._3+—-——+
m 3y 5n

(x>2)

(22x>0)

} (x>0)

(-1<x<1)

log, (a+x) = logea+2{ X
2a+x

3000+

1+x P P
log, = 2(x+=+=+ .- +
©1l—x 3 5 2n—1

log,x = log. a +

2a 3a
Trigonometric

X X
sinx = x—=+=——

3t 51 71

&K
cosx = 1_5+Z_5+
X 2% 17x | 62x

t = x4+ 42
Mx = XTI T 315 T 2835

. (_l)n—122n(22n_ 1)B2n —_

+ ...
(2n)!
1 x % 2x X
cotx = - —= - "% ——— ——— — ...
x 3 45 945 4725
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(x—a)_(x—a)2+ (x—a)s_
a 2 3

0 x 010 x 0,
500 + A

(a>0,—a<x<+ o)

+} (-l1<x<1)

+ o (0< x = 2a)

(all real values of x)

(all real values of x)

x' < g , and B, represents the

nth Bernoulli number|

x* < 17, and B, represents the

nth Bernoulli number



Differential Calculus

Notation

For the following equations, the symbols f(x), g(x), etc. represent functions of x. The value of a function
f(x) at x = a is denoted f(a). For the function y = f(x), the derivative of y with respect to x is denoted
by one of the following:

jl—y. f'(x), Dy,
X

Higher derivatives are as follows:

i)_/ = iDin = i ! = f"
dx? dx 0 dxf (x) = f"(x)

= iDiz}/D = i " = fmM
dx'jgaﬂ dxf (x) = f"(x), etc.

and values of these at x = a are denoted f"(a), f" (a), etc. (see Table of Derivatives).

Slope of a Curve

The tangent line at a point P(x, y) of the curve y = f(x) has a slope f'(x), provided that f'(x) exists at P.
The slope at P is defined to be that of the tangent line at P. The tangent line at P(x,, y,) is given by

y=y = fx)(x—x)

The normal line to the curve at P(x,, y,) has slope —1 /f'(x,) and thus obeys the equation

y=y = [/ (x)] (x=x,)

(The slope of a vertical line is not defined.)

Angle of Intersection of Two Curves

Two curves, y = f,(x) and y = f,(x), that intersect at a point P(X, Y) where derivatives f;(X), f5(X) exist
have an angle () of intersection given by

f3(X) = f1(X)

e X 0 )

If tan o > 0, then A is the acute angle; if tan 0 < 0, then O is the obtuse angle.

Radius of Curvature

The radius of curvature R of the curve y = f(x) at point P(x, y) is
. 3/2
oo LG
f"(x)

In polar coordinates (6, r), the corresponding formula is
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2 [ﬂT’DZ 3/2
It

2, AT dr

r +2[W rdez

The curvature K is 1/R.

Relative Maxima and Minima

The function f has a relative maximum at x = a if f(a) = f(a + ¢) for all values of ¢ (positive or negative)
that are sufficiently near zero. The function f has a relative minimum at x = b if f(b) < f(b + ¢) for all
values of ¢ that are sufficiently close to zero. If the function fis defined on the closed interval x; < x < x,
and has a relative maximum or minimum at x = g, where x; < a < x,, and if the derivative f'(x) exists
at x = a, then f'(a) = 0. It is noteworthy that a relative maximum or minimum may occur at a point
where the derivative does not exist. Further, the derivative may vanish at a point that is neither a maximum
nor a minimum for the function. Values of x for which f'(x) = 0 are called “critical values.” To determine
whether a critical value of x, say x,, is a relative maximum or minimum for the function at x,, one may
use the second derivative test:

1. If f"(x,) is positive, f (x,) is a minimum.
2. If f "(x,) is negative, f (x,) is a maximum.
3. If f "(x,) is zero, no conclusion may be made.

The sign of the derivative as x advances through x. may also be used as a test. If f'(x) changes from
positive to zero to negative, then a maximum occurs at x,, whereas a change in f'(x) from negative to
zero to positive indicates a minimum. If f'(x) does not change sign as x advances through x,, then the
point is neither a maximum nor a minimum.

Points of Inflection of a Curve

The sign of the second derivative of f indicates whether the graph of y = f(x) is concave upward or
concave downward:

f"(x)>0: concave upward

f"(x)<0: concave downward

A point of the curve at which the direction of concavity changes is called a point of inflection
(Figure 29). Such a point may occur where f"(x) = 0 or where f"(x) becomes infinite. More precisely, if
the function y = f(x) and its first derivative ' = f(x) are continuous in the interval a < x < b, and if y" =
f"(x) exists in a < x < b, then the graph of y = f(x) for a < x < b is concave upward if f"(x) is positive
and concave downward if f”(x) is negative.

Taylor’s Formula

If fis a function that is continuous on an interval that contains a and x, and if its first (n + 1) derivatives
are continuous on this interval, then

709 = fla) + @) e—a) + L8 ay + LU ey s s L gy v

where R is called the remainder. There are various common forms of the remainder:
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FIGURE 29 Point of inflection.

Lagrange’s Form
n+1
R = f(n+1)(p) %; B between a and x
n :

Cauchy’s Form

R = f(nﬂ)(ﬁ) x—ﬁ)’;(x—a); B between a and x

Integral Form
R = [Cf () ar
a n:

Indeterminant Forms

If f(x) and g(x) are continuous in an interval that includes x = a, and if f(a) = 0 and g(a) = 0, the limit
lim, , (f(x)/g(x)) takes the form “0/0,” called an indeterminant form. UHopital’s rule is

lim ]@ = lim f(x)

xaug(x) X -a g'(X)

Similarly, it may be shown that if f(x) — cand g(x) — cas x — a, then
lim m = lim f—' (x)
X -a g(X) X -a g'(X)

(The above holds for x — ca)

Examples
sin x . COSX
lim—= = lim =1
x>0 X x>0 1
x 2x 2
Iim = =1lim == 1lim = =0
xﬁmex xaooex xﬁooex
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FIGURE 30 Trapezoidal rule for area.

Numerical Methods

a. Newton’s method for approximating roots of the equation f(x) = 0: A first estimate x, of the root
is made; then, provided that f'(x,) Z 0, a better approximation is x,:

_ f(xl)
R )

The process may be repeated to yield a third approximation x; o the root:

_ f(xz)
BTRTEG)

provided f'(x,) exists. The process may be repeated. (In certain rare cases, the process will not
converge.)

b. Trapezoidal rule for areas (Figure 30): For the function y = f(x) defined on the interval (a, b) and
positive there, take n equal subintervals of width Ax = (b — a)/n. The area bounded by the curve
between x = a and x = b (or definite integral of f(x)) is approximately the sum of trapezoidal
areas, or

1
A D%yﬂ +y1 + }’2+ +yr171+ Eyn%Ax)
Estimation of the error (E) is possible if the second derivative can be obtained:
E = L8 (o(x)’
12
where ¢ is some number between a and b.

Functions of Two Variables

For the function of two variables, denoted z = f(x, y), if y is held constant, say at y = y,, then the resulting
function is a function of x only. Similarly, x may be held constant at x;, to give the resulting function of y.
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The Gas Laws

A familiar example is afforded by the ideal gas law that relates the pressure p, the volume V, and the
absolute temperature T of an ideal gas:

pV = nRT

where 7 is the number of moles and R is the gas constant per mole, 8.31 (J - K! - mole™). By rearrange-
ment, any one of the three variables may be expressed as a function of the other two. Further, either one
of these two may be held constant. If T is held constant, then we get the form known as Boyle’s law:

p=kv™ (Boyle’s law)

where we have denoted #nRT by the constant k and, of course, V > 0. If the pressure remains constant,
we have Charles’ law:

V= bT (Charles’ law)
where the constant b denotes nR/p. Similarly, volume may be kept constant:

p=aTl
where now the constant, denoted a, is nR/V.

Partial Derivatives

The physical example afforded by the ideal gas law permits clear interpretations of processes in which
one of the variables is held constant. More generally, we may consider a function z = f(x, y) defined
over some region of the x—y-plane in which we hold one of the two coordinates, say y, constant. If the
resulting function of x is differentiable at a point (x, ), we denote this derivative by one of the notations

for  Of/dx, Oz/ dx

called the partial derivative with respect to x. Similarly, if x is held constant and the resulting function of
y is differentiable, we get the partial derivative with respect to y, denoted by one of the following:

f, Of/dy, 0z/dy

Example
Given z = x'y’ —ysin x + 4y, then
dz/dx = 4(xy) —y cos x
dz/dy = 3x'y’ —sin x + 4

Integral Calculus

Indefinite Integral

If F(x) is differentiable for all values of x in the interval (a, b) and satisfies the equation dy/dx = f(x),
then F(x) is an integral of f(x) with respect to x. The notation is F(x) = [ f(x) dx or, in differential form,
dF(x) = f(x)dx.

For any function F(x) that is an integral of f(x), it follows that F(x) + Cis also an integral. We thus write

J’f(x)dx = F(x)+C
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Definite Integral

Let f(x) be defined on the interval [a, b] which is partitioned by points x,, x,, ..., X; ..., x,_, between a =

%y and b = x,. The jth interval has length Ax; = x; — x; |, which may vary with j. The sum /., f(v))Ax;,

where U; is arbitrarily chosen in the jth subinterval, depends on the numbers x,, ..., x, and the choice
of the U as well as f; however, if such sums approach a common value as all Ax approach zero, then this
value is the definite integral of f over the interval (a, b) and is denoted J':f(x)dx . The fundamental theorem
of integral calculus states that

[ fx) dx = F(b) = F(a)
where F is any continuous indefinite integral of f in the interval (a, b).

Properties

JTAG)* )+ -+ f@)]de = [Fi()dxt [F(x)det -+ [Flx)de

Lbcf(x)dx = cJ’:f(x) dx, if ¢ is a constant
sz(x)dx = —J’:f(x)dx

[y = [ flx)de + [ )

Common Applications of the Definite Integral

Area (Rectangular Coordinates)

Given the function y = f(x) such that y > 0 for all x between a and b, the area bounded by the curve y =
f(x), the x-axis, and the vertical lines x = a and x = b is

A= J’bf(x)dx

Length of Arc (Rectangular Coordinates)
Given the smooth curve f(x, y) = 0 from point (x;, y,) to point (x,, ¥,), the length between these points is

L= f%h + (dy/ dx)*dx
X1

L= Ij}h + (dx/ dy)’dy

Mean Value of a Function

The mean value of a function f(x) continuous on [a, b] is

1
(b—a)

J’abf(x)dx
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Area (Polar Coordinates)

Given the curve r = f(6), continuous and non-negative for 8, <0 < 6,, the area enclosed by this curve
and the radial lines 6 = 6, and 0 = 6, is given by

_ 5 2
A= J’elz[f(e)] do

Length of Arc (Polar Coordinates)

Given the curve r = f(6) with continuous derivative f'(6) on 6, <6 < 8,, the length of arc from 8= 6, (o
0=06,is

L= I:f (A1 +[f'(6)]°d6

Volume of Revolution

Given a function y = f(x), continuous and non-negative on the interval (a, b), when the region bounded
by f(x) between a and b is revolved about the x-axis, the volume of revolution is

v = ()]

Surface Area of Revolution
(Revolution about the x-axis, between a and b)

If the portion of the curve y = f(x) between x = a and x = b is revolved about the x-axis, the area A of
the surface generated is given by the following:

1/2

A= [2mf 1+ [F))

Work

If a variable force f(x) is applied to an object in the direction of motion along the x-axis between x = a
and x = b, the work done is

W = J’hf(x) dx

Cylindrical and Spherical Coordinates

a. Cylindrical coordinates (Figure 31)

y = rsin@
element of volume dV = r dr df dz.
b. Spherical coordinates (Figure 32)
= psin@cosf
= psingsin®
zZ = pcos @

element of volume dV = 0? sin @ dp, d@d6.

© 2003 by CRC PressLLC



P
P
P
z
y ¢
o r
y
0
X
X
FIGURE 31 Cylindrical coordinates. FIGURE 32 Spherical coordinates.
y
Y2 (X)
| y1 (%) |
| |
| |
X
a b

FIGURE 33 Region R bounded by y,(x) and y,(x).

Double Integration

The evaluation of a double integral of f(x, y) over a plane region R

J'J'Rf (x, y)dA
is practically accomplished by iterated (repeated) integration. For example, suppose that a vertical straight
line meets the boundary of R in at most two points so that there is an upper boundary, y = y,(x), and a

lower boundary, y = y,(x). Also, it is assumed that these functions are continuous from a to b (see
Figure 33). Then

[ S naa = { 5::;) f(x, ) dyHix

If R has a left-hand boundary, x = x,(y), and a right-hand boundary, x = x,(y), which are continuous
from c to d (the extreme values of y in R), then

[ S da = [ H'::;)f(x, ) sy
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Such integrations are sometimes more convenient in polar coordinates, x = 7 cos 6, y = r sin 6, dA =

r drdeé.

Surface Area and Volume by Double Integration

For the surface given by z = f(x, y), which projects onto the closed region R of the x—y-plane, one may
calculate the volume V bounded above by the surface and below by R, and the surface area S by the
following:

V= IIdeA = IIRf(x,y)dxdy

1/2

S = If. [1+ (82/3x) + (dz/dy)’] "~ dxdy
R
[In polar coordinates (r, ), we replace dA by rdrd@].

Centroid

The centroid of a region R of the x—y-plane is a point (x', y') where

= 1 |
b/ S A2

and A is the area of the region.

Example.

For the circular sector of angle 20 and radius R, the area A is 0 R? the integral needed for x', expressed
in polar coordinates, is

I x dA Ia J’R(rcose)r drdf
-aJ0

3 +a
[& sin 9} = 2R3 sina
3 3

-a

Thus,

Centroids of some common regions are shown in Figure 34.

Vector Analysis

Vectors

Given the set of mutually perpendicular unit vectors i, j, and k (Figure 35), any vector in the space may
be represented as F = ai + bj + ck, where a, b, and ¢ are components.

Magnitude of F

1
B = (a2 + b2+ &)’
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y  (rectangle)

b

y  (isos. triangle)*

— _>‘
x

y  (semicircle)

X

y  (quarter circle)

P

y  (circular sector)

\1>
S

Area

bh

bh/2

R2/2

nR2/4

R2A

Centroids

b/2

b/2

4R/3r

2R sin A/3A

h/2

h/3

4AR/31

4AR/3r

*y' = h/3 for any triangle of altitude h.

FIGURE 34

FIGURE 35 The unit vectors i, j, and k.

© 2003 by CRC PressLLC




Product by Scalar p
pF = pai+ pbj+ pck
Sum of F, and F,
F +F, = (a,+a)i+ (b +b)j+ (c,+ )k

Scalar Product
F,[F, = aja,+ bb,+ ¢,
(Thus,i-i=j-j=k-k=1landi-j=j-k=k-i=0.) Also,
F, [F, = F, [F,

(F, +F,) (F, = F, [F, + F, [F,
Vector Product
i i k
F/xF, =|a b ¢
a, b, ¢
(Thus,iXi=jXj=k Xk =0,iXj=k,j Xk =1i,and k X1i=j.) Also,
F, xF, = —F, xF,
(F,+F,)xF; = F; xF;+F, xF,
F, x(F,+F;) = F, xF,+F, xF,;
F, x (F, xF;) = (F, [F,)F,—(F, [F,)F,
F, [{F, xF;) = (F, xF,) [F,

Vector Differentiation

If V is a vector function of a scalar variable ¢, then

V = a(n)i+b(1)j+ c(t)k

and

av da. , db. , dc
— = 2O+ 25+ =k
dt dtl dt] dt

For several vector functions V;, V,, ..., V

n

dv, dv, av,
—_—t 1+ ..+
dt dt dt

d _dv, 4V,
Z(V,v,) = =2V, +V
dt( 1 2) dt 2 1 dt

LV, 4V, V) =

d v, av,
AV, xV,)) = 22 1xV, +V, x =2
dt( 1 2) dt 2 1 dt
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For a scalar-valued function g(x, y, z)
(gradient) grad g = Og = ig“. %]q. égk
ox Oy Oz

For a vector-valued function V(a, b, ¢), where g, b, and ¢ are each a function of x, y, and z,

- Wy = Oy = 84, 8b, 3
(divergence) divv = OV = 5x+ 5}/+ 52
i j k
(curl) curlv =Oxv=|9 0 9o
ox Oy Oz
a b ¢
Also,
: 3% 0%, 0%
diveradg = D¢ = 284+ 28,28
sracs g ' & o
and
curl grad g = 0; div curl V = 0;

curl curlV = grad divV —(i0%a + jO°b + kO%)

Divergence Theorem (Gauss)

Given a vector function F with continuous partial derivatives in a region R bounded by a closed surface S,
then

IJ’IRdiV[FdV: Ijsn [FdS

where n is the (sectionally continuous) unit normal to S.

Stokes’ Theorem

Given a vector function with continuous gradient over a surface S that consists of portions that are
piecewise smooth and bounded by regular closed curves such as C,

J’J’ n [turl FdS = f F Uir
s c

Planar Motion in Polar Coordinates

Motion in a plane may be expressed with regard to polar coordinates (r, 8). Denoting the position vector
by r and its magnitude by r, we have r = rR(8 ), where R is the unit vector. Also, dR/d6 = P, a unit vector
perpendicular to R. The velocity and acceleration are then

dr de

= YR+ ,4%
dt rdt

= |dr EdGDZR+[di9+2d—rd— P
{E‘E_rDﬁD "ae Cdrdr
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Note that the component of acceleration in the P direction (transverse component) may also be written

1d %2 460
rdtl de0
so that in purely radial motion it is zero and
rzd—e = C (constant)

dt

which means that the position vector sweeps out area at a constant rate [see Area (Polar Coordinates)

in the section entitled Integral Calculus].

Special Functions

Hyperbolic Functions

eX — e

sinh x =
2
X + —X
cosh x = £
2
X — p—X
tanh x = £=¢
eX+e™
sinh(—x) = —sinh x
cosh(—x) = cosh x
tanh(—x) = —tanh x
tanh x = sinh x
cosh x

. 2
cosh? x—sinh"x = 1

sinh? x = %(costh—l)

csch? x —sech? x = csch? x sech? x

sinh(x+ y) = sinh x coshy + cosh x sinhy
cosh(x+ y) = cosh x coshy + sinh x sinhy
sinh(x—y) = sinh x coshy — cosh x sinhy

cosh(x—y) = cosh x coshy —sinh x sinhy

tanh x + tanh
tanh (x + = tanh x * tanhy
anh(x+ ) 1 + tanh x tanhy

_,) = tanh x —tanhy
tanh (x —y) 1 —tanh x tanhy

Laplace Transforms

1
hx =
ST Snh x
1
sech x =
¥ T Cosh x
1
ctnh x =
tanh x
ctnh(—x) = —ctnh x
sech(—x) = sech x
csch(—x) = —csch x
ctnh x = w
sinh x

cosh? x = %(cosh 2x+1)

ctnh? x—csch?x = 1

1

tanh? x + sech? x

The Laplace transform of the function f(t), denoted by F (s) or L{f(¢)}, is defined

F(s) = f: f(t)e~rdt
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provided that the integration may be validly performed. A sufficient condition for the existence of F(s)
is that f () be of exponential order as t — o and that it is sectionally continuous over every finite interval
in the range t 20. The Laplace transform of g(¢) is denoted by L{g(#)} or G(s).

Operations

() F(s) = f: f(t)e=dt
af(1) + bg(1) aF(s) + bG(s)

f'(t) sF(s) —f(0)

f(1) s?F(s) —sf(0) —£"(0)
(0 SE(s) =" 1f(0) =5 2f (0) =+ =f=(0)
tf(t) =F'(s)

t"f(t) (=1)"Ft)(s)

e“'f(t) F(s—a)

[ =B R(B)B F(s) [5(s)

flt—a) eF(s)

f% aF(as)

[s(B)dp 26(9)
ft=c)o(t—c) eF(s),c>0

where

Ot—c) = 0if0<t<c
lift=c

J’we*”f( )dr

1—e=w

flt) = ft+ w)
(periodic)

Table of Laplace Transforms

f(r) F(s) f(t) F(s)
1 1/s sinh at a
SZ_aZ
t 1/s? cosh at =
52_a2
0 Us'(n=1,2,3,..) & — e _a-b (a #b)
(n—=1)! (s—a)(s=D)
1 /T at bt S(ﬂ—b)
— |- -b — zb
S Zsﬁ/g ae ¢ (s—a)(s—D) (a#b)
1 T . 2as
= J: t sin at —_
«/t s (s2+ a2)?
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1 s2—a?

et —_— t cos at —_—
s—a (s2 + a?)?
1 . b
te®t — e%sin bt —
(s—a)? (s—a)2+ b?
tn—1leat 1 s—a
—(n=1,2,3, ... e cos bt e
(n=1)! (s—a)" ( ) (s—a)*+ b2
" L, x>-1 sin at Arc tane
Mx+1) s¥*l t s
. a sinh at 1 B+ a]
sin at e -lo
e ; 28 T
cos at 5
s2+ a?
z-Transform

For the real-valued sequence {f(k)} and complex variable z, the z-transform, F (z) = Z{f(k)}, is defined by

Z{f(k)} = F(z) = kif(k)ﬂ

For example, the sequence f(k) =1, k =0, 1, 2, ..., has the z-transform

F(Z) = 1+zl+ 224 z3. 4+ z7k+ ...

Angles are measured in degrees or radians: 180° = Ttradians; 1 radian = 180°/Tt degrees.
The trigonometric functions of 0°, 30°, 45°, and integer multiples of these are directly computed.

0° 30° 45° 60° 90° 120° 135° 150° 180°
sin 0 1 ﬁ _«/E 1 ﬁ ﬁ 1 0
2 2 2 2 2 2
cos 1 ﬁ ﬁ l 0 _l _ﬁ _I—D_’ -1
2 2 2 2 2 2
tan 0 ﬁ 1 ﬁ 0 _ ﬁ -1 ~ ﬁ 0
3 3
ctn o ﬁ 1 ﬁ 0 _[—72 -1 _ﬁ o
3 3
sec 1 M «/5 2 00 -2 _ ﬁ ~ 2;[?2 -1
3 3
csc 0 2 ﬁ 2;[?1 1 2_“6 ﬁ 2 0
3 3
Trigonometric Identities
. 1
A=
s csc A
1
A =
€08 sec A
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Defining z = eT gives

L{U (£} = iU(kT)z*"

which is the z-transform of the sampled signal U(kT).

Properties

Linearity: Z{ af,(k) + bf,(k)}

aZ{fi(k} +bZ{f:(k)} = aF\(2) + bFy(2)

Right-shifting property: Z{ f(k—n)} = z7"F(z)

Left-shifting property: Z{f(k+n)} = z'F(z) —”Z;f(k)z"-k

Time scaling: Z{ a*f(k)} = F(z/a)
Multiplication by k: Z{kf(k)}} = —zdF(z)/dz
Initial value: f(0) = limm(l —z)F(z) = F()

Final value: limf(k) = lim (1 —z")F(z)

Convolution: Z{fl(k)*fz(k)} = F,(2)F,(2)

z-Transforms of Sampled Functions

fk)
1 at k;else 0

1

kT

(kT)*

sin wkT

cos wT
e—akT

kTekT
(kT)?eakT

e Tsin wkT
e*Tcos wkT
ak sin wkT

ak cos wkT
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Z{f(kT)} = F(z)

z

z—1
Tz
(z—1)*
T?z(z+ 1)
(z—1)°
z sin wT
z2—2z cos wT+ 1
z(z— cos wT)
z2—2z cos wT + 1

z
z—eaT

zTe T

(z—eT)?
T2e=Tz(z + e=T)
(z—eT)’
zeTsin wWT
z?—2ze*Tcos WT + e~24T

z(z—eTcos wWT)
z2—=2ze*TcoswT + e=2T

az sin wT
z?—2az coswT + a?

z(z—a cos wT)
z?—2az coswT + a?




Fourier Series

The periodic function f(¢) with period 2Tt may be represented by the trigonometric series
+ Z(an cos nt+ b, sin nt)
where the coefficients are determined from

_ 1
0= o
a, = %I:Tf(t)cos ntdt
= l 4 1 =
b, = n_J’_nf(t)sm ntdt (n=1,2,3,...)

Such a trigonometric series is called the Fourier series corresponding to f(¢) and the coefficients are
termed Fourier coefficients of f(#). If the function is piecewise continuous in the interval —Tt< ¢ < Ttand
has left- and right-hand derivatives at each point in that interval, then the series is convergent with sum
f(t) except at points t;, at which f(¢) is discontinuous. At such points of discontinuity, the sum of the
series is the arithmetic mean of the right- and left-hand limits of f() at t,. The integrals in the formulas
for the Fourier coefficients can have limits of integration that span a length of 2711, for example, 0 to 211
(because of the periodicity of the integrands).

Functions with Period Other Than 21

If £ (¢) has period P, the Fourier series is

() Oa, + Z%z coszﬂt+ b sinzgn E

where

1 P/zf(t) gt

a, = —

0 PI—P/Z
2 P2 27

a, = = t)cos=——t dt
B, (0s7p
2 b2 . 2T

b, = = t)sin=——tdt
PJ:P/zf( ) P

Again, the interval of integration in these formulas may be replaced by an interval of length B for
example, 0 to P.

Bessel Functions

Bessel functions, also called cylindrical functions, arise in many physical problems as solutions of the
differential equation

Xyt xy + (6 =n)y = 0
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which is known as Bessel’s equation. Certain solutions of the above, known as Bessel functions of the first
kind of order n, are given by

_e_ (=D pgt
1) = Y A ke o0

0 ( 1) Dq:lfn+2k
Jlx) = Zk.r( n+k+ 1)00

In the above it is noteworthy that the gamma function must be defined for the negative argument g:
I(q) = M(q + 1)/q, provided that g is not a negative integer. When ¢ is a negative integer, 1/I'(q) is
defined to be zero. The functions J_, (x) and J, (x) are solutions of Bessel’s equation for all real n. It is
seen, forn =1, 2, 3, ..., that

Jou(x) = (=1)"],(x)

and, therefore, these are not independent; hence, a linear combination of these is not a general solution.
When, however, 7 is not a positive integer, a negative integer, or zero, the linear combination with arbitrary
constants ¢, and ¢,

)’ = Cljn(x) + CZI—n(x)

is the general solution of the Bessel differential equation.
The zero-order function is especially important as it arises in the solution of the heat equation (for a
“long” cylinder):

6
X

222+
2’47 2%4%

To(x) = 1_;2"'

while the following relations show a connection to the trigonometric functions:

1/2
Ji(x) = {_2_} sinx
2 TIX
1/2
] (x) = {i} cosx
"2 Tix

The following recursion formula gives J, , ,(x) for any order in terms of lower-order functions:
2n _
zjn(x) - ]nfl(x)+]n+1(x)

Legendre Polynomials

If Laplace’s equation, [PV = 0, is expressed in spherical coordinates, it is

2D
rs1n95—V+2rsm95V+sin95—V+c 95V 1 5V

o or 56 56 sinf 54%

and any of its solutions, V (, 6, ¢), are known as spherical harmonics. The solution as a product
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V(r, 6, 9) = R(r)O(O)

which is independent of @ leads to

sin’0@" + sin6 cos 0O + [n(n + 1)sin’6]© = 0

Rearrangement and substitution of x = cos8 leads to

2
(l—xz)gi(?—Zx%a+n(n+ 1) =0
x X

known as Legendre’s equation. Important special cases are those in which 7 is zero or a positive integer,
and, for such cases, Legendre’s equation is satisfied by polynomials called Legendre polynomials, P,(x).
A short list of Legendre polynomials, expressed in terms of x and cos 6, is given below. These are given
by the following general formula:

P,(x) = N (_1)j(2n—2j)! RS
02" (n =) (n —2j)!

where L = n/2 if nis even and L = (n — 1)/2 if n is odd.

Py(x) =1
Pi(x) = x

Py(x) = (3% 1)
Py(x) = %(Sxa—?’x)
P(x) = %(35x4—30x2+3)

Py(x) = é(63x5—70x3+ 15x)

Py(cosB) = 1
P,(cosB) = cosB

P,(cosB) = ;11(3cos29+ 1)
P,(cosB) = %(5cos36+ 3cos6)

P,(cosB) = 6L4(35cos49+ 20c0s20+9)

Additional Legendre polynomials may be determined from the recursion formula
(n+1)P,, (x)—(2n+ 1)xP,(x) +nP,_(x) = 0 (n=1,2,..)

or the Rodrigues formula
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Laguerre Polynomials

Laguerre polynomials, denoted L, (x), are solutions of the differential equation

xy"+(1=x)y'+ny =0
and are given by
L(x) = i(%l)jc(n,j)xf (n=0,1,2,...)
o )

Thus,
Ly(x) = 1
Li(x) = 1—x
Ly(x) = 1-2x+ %xz

32 13
Li(x) = 1-3x+=x —-x
() -1
Additional Laguerre polynomials may be obtained from the recursion formula

(n+ 1)L, (x) =2n+1-x)L,(x) + nL,_(x) =0

Hermite Polynomials

The Hermite polynomials, denoted H,, (x), are given by

2
9 g =X
Hy=1, H(x) = (-1)%" %€

(n=1,2,...)

n
and are solutions of the differential equation

y'=2xy"+2ny = 0 (n=0,1,2,...)
The first few Hermite polynomials are
Hy =1 H,(x) = 2x

H,(x) = 4x* =2 H,(x) = 8x"—12x
H,(x) = 16x"—48x"+ 12

Additional Hermite polynomials may be obtained from the relation
H,.\(x) = 2xH,(x) - H, (x)
where prime denotes differentiation with respect to x.

Orthogonality

A set of functions {f, (x)} (n=1,2, ... ) is orthogonal in an interval (a, b) with respect to a given weight
function w(x) if

[WEL (<) dx =0 whenm#n
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The following polynomials are orthogonal on the given interval for the given w(x):

Legendre polynomials: P,(x) w(x) =1

a=-1,b=1
Laguerre polynomials: L(x)  w(x) = exp(—x)
a=0,b=o
Hermite polynomials H,(x) w(x) = exp (_x2 )
a= -0 b= o
The Bessel functions of order n, J, (A x), ], (A;x), ..., are orthogonal with respect to w(x) = x over the

interval (0, ¢), provided that the A, are the positive roots of J, (Ac) = 0:
Io‘xjn(/\j x)] (A x) dx = 0 (j#k)
where n is fixed and n = 0.

Statistics

Arithmetic Mean

where X, is a measurement in the population and N is the total number of X; in the population. For a
sample of size n, the sample mean, denoted X, is

SX,

x = 2
n

Median

The median is the middle measurement when an odd number (1) of measurements is arranged in order;
if n is even, it is the midpoint between the two middle measurements.

Mode

The mode is the most frequently occurring measurement in a set.
Geometric Mean

geometric mean = n./X1X2...Xy,

Harmonic Mean

The harmonic mean H of n numbers X, X,, ..., X, is

n

n

H= 50760
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Variance

The mean of the sum of squares of deviations from the mean () is the population variance, denoted 0*:
02 = Z(Xi—u)2/N
The sample variance, 52, for sample size n is

&= 3(X-X)/(n-1)

A simpler computational form is

Standard Deviation

The positive square root of the population variance is the standard deviation. For a population,

2.0
g = i N
N
for a sample
5 1/2
sy (XD
s = ' n
n—1
Coefficient of Variation
V=3s/X

Probability

For the sample space U, with subsets A of U (called “events”), we consider the probability measure of an
event A to be a real-valued function p defined over all subsets of U such that:

0<p(A)<1
p(U) = land p(®) = 0

If A, and A, are subsets of U, then

p(AOA;) = p(A) +p(A,) —p(A, n Ay)

Two events A, and A, are called mutually exclusive if and only if A, n A, = ¢ (null set). These events
are said to be independent if and only if p(A, n A,) = p(A,)p(A,).
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Conditional Probability and Bayes’ Rule
The probability of an event A, given that an event B has occurred, is called the conditional probability
and is denoted p(A/B). Further,

_ p(AnB)
p(A/B) —p(B)

Bayes’ rule permits a calculation of a posteriori probability from given a priori probabilities and is
stated below:

If A, A,, ..., A, are n mutually exclusive events, and p(A,) + p(A,) + ... + p(A,) = 1, and B is any
event such that p(B) is not 0, then the conditional probability p(A,/B) for any one of the events A, given
that B has occurred, is

P(A;)p(B/A))
p(A)p(B/A,) + p(A,)p(B/A,) + -+ p(A,)p(B/A,)

p(A/B) =

Example
Among five different laboratory tests for detecting a certain disease, one is effective with probability 0.75,
whereas each of the others is effective with probability 0.40. A medical student, unfamiliar with the
advantage of the best test, selects one of them and is successful in detecting the disease in a patient. What
is the probability that the most effective test was used?

Let B denote (the event) of detecting the disease, A, the selection of the best test, and A, the selection
of one of the other four tests; thus, p(A,) = 1/5, p(A,) = 4/5, p(B/A,) = 0.75,and p(B/A,) = 0.40. Therefore,

é(0.75)
P(AV/B) = T = 0319
-(0.75) + -(0.40
1(075) + 2(040)
Note that the a priori probability is 0.20; the outcome raises this probability to 0.319.

Binomial Distribution
In an experiment consisting of # independent trials in which an event has probability p in a single trial,

the probability Py of obtaining X successes is given by

X (n—X)

Py = Cixyp 9
where

nl

q=(1-p)and C, x = m

The probability of between a and b successes (both a and b included) is P, + P, + :-- + P,,soifa=
0 and b = n, this sum is

)Z C(n,x)pxq(n_)() - qn+ C(n‘l)qn—lp_‘_ C(nvz)qn_zpz"' +pn — (q+p)n =1
=0

Mean of Binomially Distributed Variable

The mean number of successes in 7 independent trials is m = np, with standard deviation o = /npq.
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Normal Distribution

In the binomial distribution, as n increases, the histogram of heights is approximated by the bell-shaped
curve (normal curve)

1 ef(xfm)z/ZcT2
g2

where m = the mean of the binomial distribution = np, and o = /npq is the standard deviation. For any
normally distributed random variable X with mean m and standard deviation 0, the probability function
(density) is given by the above.

The standard normal probability curve is given by

Y =

and has mean = 0 and standard deviation = 1. The total area under the standard normal curve is 1. Any
normal variable X can be put into standard form by defining Z = (X — m)/0; thus, the probability of X
between a given X, and X, is the area under the standard normal curve between the corresponding Z,
and Z, (Table 1 in the Tables of Probability and Statistics). The standard normal curve is often used
instead of the binomial distribution in experiments with discrete outcomes. For example, to determine
the probability of obtaining 60 to 70 heads in a toss of 100 coins, we take X = 59.5 to X = 70.5 and
compute corresponding values of Z from mean np = 100 ! = 50, and the standard deviation
o = J(100)(1/2)(1/2) = 5. Thus, Z = (59.5 - 50)/5 = 1.9 and Z = (70.5 — 50)/5 = 4.1. From Table 1, the
area between Z = 0 and Z = 4.1 is 0.5000 and between Z = 0 and Z = 1.9 is 0.4713; hence, the desired
probability is 0.0287. The binomial distribution requires a more lengthy computation.

Craoo,60)(172)"(172)" + Cpigo, e (172)"(1/2)” + -+ + Cpipg,20)(1/2)"(172)™

Note that the normal curve is symmetric, whereas the histogram of the binomial distribution is
symmetric only if p = g =1/2. Accordingly, when p (hence, q) differs appreciably from 1/2, the difference
between probabilities computed by each increases. It is usually recommended that the normal approxi-
mation not be used if p (or g) is so small that np (or nq) is less than 5.

Poisson Distribution

is an approximation to the binomial probability for r successes in n trials when m = np is small (<5)
and the normal curve is not recommended to approximate binomial probabilities (Table 2 in the Tables
of Probability and Statistics). The variance 02 in the Poisson distribution is 7p, the same value as the mean.

Example

A school’s expulsion rate is 5 students per 1000. If class size is 400, what is the probability that 3 or more
will be expelled? Since p = 0.005 and #n = 400, m = np = 2 and r = 3. From Table 2 we obtain for m = 2
and r ( = x) = 3 the probability p = 0.323.
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Tables of Probability and Statistics

TABLE 1 Areas Under the Standard Normal Curve

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0  0.0000  0.0040  0.0080 0.0120  0.0160  0.0199  0.0239  0.0279  0.0319  0.0359
0.1  0.0398 0.0438  0.0478  0.0517  0.0557  0.0596  0.0636  0.0675  0.0714  0.0753
0.2 0.0793 0.0832  0.0871  0.0910  0.0948  0.0987  0.1026  0.1064  0.1103  0.1141
0.3 0.1179  0.1217  0.1255  0.1293  0.1331  0.1368  0.1406  0.1443  0.1480  0.1517
0.4 0.1554 0.1591  0.1628  0.1664  0.1700  0.1736  0.1772  0.1808  0.1844  0.1879
0.5 0.1915 0.1950 0.1985 0.2019  0.2054  0.2088  0.2123  0.2157  0.2190  0.2224

0.6 0.2257 0.2291  0.2324  0.2357  0.2389  0.2422  0.2454  0.2486  0.2517  0.2549
0.7 0.2580 0.2611  0.2642 0.2673  0.2704  0.2734  0.2764  0.2794  0.2823  0.2852
0.8 0.2881 0.2910  0.2939  0.2967  0.2995  0.3023  0.3051  0.3078  0.3106  0.3133
09 03159 0.3186  0.3212  0.3238  0.3264  0.3289  0.3315  0.3340  0.3365  0.3389
1.0 0.3413 0.3438  0.3461  0.3485  0.3508  0.3531  0.3554  0.3577  0.3599  0.3621

1.1 03643 0.3665 0.3686  0.3708  0.3729  0.3749  0.3770  0.3790  0.3810  0.3830
1.2 0.3849  0.3869  0.3888  0.3907  0.3925 0.3944  0.3962  0.3980  0.3997  0.4015
1.3 0.4032 0.4049  0.4066  0.4082  0.4099 0.4115 0.4131 0.4147 0.4162  0.4177
1.4 04192 04207 0.4222 04236  0.4251 0.4265 0.4279  0.4292  0.4306  0.4319
1.5 04332 0.4345 04357 04370 0.4382  0.4394  0.4406  0.4418  0.4429  0.4441

1.6 0.4452  0.4463  0.4474 0.4484  0.4495 0.4505 0.4515 0.4525 0.4535  0.4545
1.7 0.4554 0.4564 0.4573  0.4582  0.4591 0.4599  0.4608 0.4616  0.4625  0.4633
1.8 0.4641  0.4649  0.4656  0.4664  0.4671 0.4678  0.4686  0.4693  0.4699  0.4706
1.9 04713 04719 04726 04732 04738  0.4744  0.4750  0.4756  0.4761  0.4767
2.0 04772 04778  0.4783  0.4788  0.4793  0.4798  0.4803  0.4808  0.4812  0.4817

2.1 04821 0.4826  0.4830  0.4834 0.4838 0.4842  0.4846  0.4850  0.4854  0.4857
2.2 04861 0.4864  0.4868  0.4871  0.4875 0.4878  0.4881  0.4884  0.4887  0.4890
2.3 04893 0.4896  0.4898  0.4901  0.4904 0.4906  0.4909 0.4911  0.4913  0.4916
24 04918 0.4920  0.4922  0.4925  0.4927  0.4929  0.4931 0.4932 0.4934  0.4936
25 04938 0.4940  0.4941  0.4943  0.4945 0.4946  0.4948 0.4949  0.4951  0.4952

2.6 04953 0.4955  0.4956  0.4957  0.4959  0.4960  0.4961  0.4962  0.4963  0.4964
2.7 04965 0.4966  0.4967  0.4968  0.4969  0.4970  0.4971  0.4972  0.4973  0.4974
2.8 04974 04975 0.4976  0.4977  0.4977  0.4978  0.4979  0.4979  0.4980  0.4981
29 04981  0.4982  0.4982  0.4983  0.4984  0.4984  0.4985 0.4985 0.4986  0.4986
3.0 04987 0.4987  0.4987  0.4988  0.4988  0.4989  0.4989  0.4989  0.4990  0.4990

Source: R.J. Tallarida and R.B. Murray, Manual of Pharmacologic Calculations with Computer Programs, 2nd
ed., New York: Springer-Verlag, 1987. With permission.
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TABLE 2 Poisson Distribution

Each number in this table represents the probability of obtaining at least X successes, or the area under the histogram to the
right of and including the rectangle whose center is at X.

m X=0 X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9 X=10 X=11 X=12 X=13 X=14

.10 1.000 .095  .005
.20 1.000 .181 .018 .001
.30 1.000 .259  .037  .004
40 1.000 .330 .062 .008 .001
.50 1.000  .393  .090 .014 .002
.60 1.000 .451 .122 .023  .003
.70 1.000 .503 .156 .034 .006  .001
.80 1.000 .551 .191 .047 .009 .001
90 1.000 .593 .228 .063 .013  .002
1.00 1.000 .632 .264 .080 .019 .004 .001
1.1 1.000 .667 .301 .100 .026 .005 .001
1.2 1.000 .699 .337 .120 .034 .008  .002
1.3 1.000 .727 373 .143 .043 .011 .002
1.4 1.000 .753 .408 .167 .054 .014 .003 .001
1.5 1.000 .777 442 191 .066 .019 .004 .001
1.6 1.000 .798 475 217 .079 .024 .006 .001
1.7 1.000 .817 .507 .243 .093 .030 .008 .002
1.8 1.000 .835 537 .269 .109 .036 .010 .003 .001
1.9 1.000 .850 .566 .296 .125 .044 .013 .003  .001
2.0 1.000 .865 .594 .323 .143 .053 .017 .005 .001
2.2 1.000 .889 .45 377 181 .072 .025 .007 .002
2.4 1.000 .909 .692 430 .221 .096 .036 .012 .003 .001
2.6 1.000 926 .733 482 264 .123 .049 .017 .005 .001
2.8 1.000 .939 .769 531 .308 .152 .065 .024 .008 .002 .001
3.0 1.000 .950 .801 .577 .353 .185 .084 .034 .012 .004 .001
3.2 1.000 .959 .829 .620 .397 219 .105 .045 .017 .006 .002
3.4 1.000 .967 .853 .660 .442 256 .129 .058 .023  .008 .003 .001
3.6 1.000 .973 .874 .697 485 294 156 .073 .031 .012 .004 .001
3.8 1.000 .978 .893 .731 .527 332 .184 .091 .040 .016 .006 .002
40 1.000 .982 908 .762 .567 .371 .215 .111 .051 .021 .008 .003 .001
4.2 1.000 985 .922 .790 .605 410 .247 .133 .064 .028 011 .004 .001
4.4 1.000 988 .934 815 .641 449 280 .156 .079 .036 .015 .006 .002 .001
4.6 1.000 .990 944 837 .674 487 314 .182 .095 .045 .020 .008 .003 .001
4.8 1.000 .992 952 857 .706 .524 .349 209 .113  .056 .025 .010 .004 .001
50 1.000 .993 960 875 .735 .560 .384 .238 .133  .068 .032 .014 .005 .002 .001

Source: H.L. Adler and E.B. Roessler, Introduction to Probability and Statistics, 6th ed., New York: W. H. Freeman, 1977. With
permission.
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TABLE 3 t-Distribution

90% 95% 99%
deg. freedom,f (P=0.1) (P=0.05) (P=0.01)
1 6.314 12.706 63.657
2 2.920 4.303 9.925
3 2.353 3.182 5.841
4 2.132 2.776 4.604
5 2.015 2.571 4.032
6 1.943 2.447 3.707
7 1.895 2.365 3.499
8 1.860 2.306 3.355
9 1.833 2.262 3.250
10 1.812 2.228 3.169
11 1.796 2.201 3.106
12 1.782 2.179 3.055
13 1.771 2.160 3.012
14 1.761 2.145 2.977
15 1.753 2.131 2.947
16 1.746 2.120 2.921
17 1.740 2.110 2.898
18 1.734 2.101 2.878
19 1.729 2.093 2.861
20 1.725 2.086 2.845
21 1.721 2.080 2.831
22 1.717 2.074 2.819
23 1.714 2.069 2.807
24 1.711 2.064 2.797
25 1.708 2.060 2.787
26 1.706 2.056 2.779
27 1.703 2.052 2.771
28 1.701 2.048 2.763
29 1.699 2.045 2.756
inf. 1.645 1.960 2.576

Source:R.J. Tallarida and R.B. Murray, Manual of Phar-
macologic Calculations with Computer Programs, 2nd ed.,
New York: Springer-Verlag, 1987. With permission.
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TABLE 4 X?-Distribution

X2

v 0.05 0.025 0.01 0.005
1 3.841 5.024 6.635 7.879
2 5.991 7.378 9.210 10.597
3 7.815 9.348 11.345 12.838
4 9.488 11.143 13.277 14.860
5 11.070 12.832 15.086 16.750
6 12.592 14.449 16.812 18.548
7 14.067 16.013 18.475 20.278
8 15.507 17.535 20.090 21.955
9 16.919 19.023 21.666 23.589

10 18.307 20.483 23.209 25.188

11 19.675 21.920 24.725 26.757

12 21.026 23.337 26.217 28.300

13 22.362 24.736 27.688 29.819

14 23.685 26.119 29.141 31.319

15 24.996 27.488 30.578 32.801

16 26.296 28.845 32.000 34.267

17 27.587 30.191 33.409 35.718

18 28.869 31.526 34.805 37.156

19 30.144 32.852 36.191 38.582

20 31.410 34.170 37.566 39.997

21 32.671 35.479 38.932 41.401

22 33.924 36.781 40.289 42.796

23 35.172 38.076 41.638 44.181

24 36.415 39.364 42.980 45.558

25 37.652 40.646 44314 46.928

26 38.885 41.923 45.642 48.290

27 40.113 43.194 46.963 49.645

28 41.337 44.461 48.278 50.993

29 42.557 45.722 49.588 52.336

30 43.773 46.979 50.892 53.672

Source: J.E. Freund and F.J. Williams, Elementary
Business Statistics: The Modern Approach, 2nd ed.,
Englewood Cliffs,N.J.: Prentice-Hall, 1972. With per-
mission.
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TABLE 5

Variance Ratio

m

1, 1 2 3 4 5 6 8 12 24 o0
F(95%)
1 161.4 1995 2157 2246 230.2 2340 2389 2439 249.0 2543
2 1851 19.00 19.16 1925 1930 1933  19.37 1941 19.45  19.50
3 1013 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 591 5.77 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 291 2.74 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40
12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30
13 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.29 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73
25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71
26 422 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69
27 421 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67
28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65
29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51
60 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39
120 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25
0 3.84 2.99 2.60 2.37 2.21 2.10 1.94 1.75 1.52 1.00
F(99%)
1 4052 4999 5403 5625 5764 5859 5982 6106 6234 6366
29850  99.00 99.17  99.25  99.30  99.33 99.37  99.42 9946  99.50
3 3412 30.82 2946  28.71 2824 2791 2749 27.05 26.60 26.12
4 2120 18.00 16.69 1598 15.52 1521 14.80 1437 1393 13.46
5 1626 1327 1206 11.39 1097 10.67 10.29 9.89 9.47 9.02
6 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88
7 1225 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86
9 1056 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31
10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91
11 9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36
13 9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16
14 8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65
18 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57
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TABLE 5 (continued) Variance Ratio

m

n, 1 2 3 4 5 6 8 12 24 o0

19 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36
22 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21
25 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17
26 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.55 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03
30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60
120 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34 1.95 1.38
] 6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00

Source: R.A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research,
London: The Lingman Group, Ltd. With permission.

Table of Derivatives

In the following table, a and » are constants, e is the base of the natural logarithms, and u and v denote
functions of x.

d
1. — =0
dx(a)
d
2. — =1
dx(x)
d (o = o
3. dx(au) =a—
d du  dv
4. L(u+v) = &+ 2
dx(u V) dx dx
d dv du
5. L(uv) = +y 28
dx(uv) " dx v dx
zib_t_u dv
d _ dx dx
6. Ec(u/ ) >

7. L") = au
dx d
d o udu
T dx dx
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

d
dx

dx

u _ udu
.—a = (logea)a T

d _ du
—log,u = (1/u) o

d _ du
Elogau = (logae)(l/u) T

Aoy, du
dx x
isinu = cosu du
dx dx
icosu = —sinud—u
dx dx
itanu = seczu @
dx dx
ii—ctn u= —csczu du
dx dx
ij—secu = secutanu@
dx dx
io:scu = —csuctn u du
dx dx
d . -1 _ 1 du
Ecsm u = —2 o
N1—u
d -1 _ =1 du
—cos u = —
dx h_2 dx
4 ianly = L du
dx 1+ u2 dx
4oy = =L du
dx 1+ uz dx
Doy = L du
dx 2 dx
uju —1
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v dV
7 +u'(log,u) T

1 . -1 1
= < <=
( 271 SSin U _271’

(0< cos lu< )

-1 -1
(—m< sec u<—%7T, 0 <sec u<%n)



24, ooty = =L du

dx 2 dx
uAu —1

-1 -1
(—m<csc uS—%7T;0<csc uS%r[)

25. d%csinh u = coshu Z—Z

26. d—i—ccosh u = sinh u %

d 2 du
27. —tanh u = h'u —
= anh u = sech’u T

28. ictnh u = —cschzu du
dx x

29. isechu = —sechu tanhu du
dx dx

30. ijl-cschu = —cschu ctnh u du
dx dx
31. isinh_lu = 1 du
dx 2 dx
u +1
32. i1—cosh_lu = 1 du
dx 2 dx
u —1
33. ﬁl—tanh_lu =1 > du
dx 1—u dx
34. -d—ctnh_lu = % du
dx y2_q dx
35. disech_lu ==L ;ﬂl
* m/l—uz x
36. icsch_lu -l du
dx 2 dx
unu +1

Additional Relations with Derivatives

Li = f0 L[ = )

d 1
If x = S h ay = =
x = f(y), then ix

dy
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If y = f(u) and u = g(x), then dy - dy fu (chain rule)
dx du dx

_ _ dy _ g(1) Iy _ [(0g"() =g (Df"(1)
If x = f(¢) and y = g(t), then = o=, and =
o e SO g O

(Note: Exponent in denominator is 3.)

Integrals

Elementary Forms

1. J‘adx = ax
2. J‘a O(x)dx = aJ’f(x)dx

3. J‘(p(y) dx = J’%,ﬂ dy, where y' = gz

X

4, J‘(u +v)dx = J’u dx +Ivdx, where u and v are any functions of x

5. J‘u dv = uJ‘dv—J'vdu= uv—J‘vdu
6. J‘u Z—;dx = uv—J‘vZ—zdx

n+1
7. (xdx = 2, except n = —1
I n+1 P

8. I]ﬂf%zgdf = log flx)  (df(x) = f'(x)dx)

9. Id;x = logx

fi(x) dx _ _p
10. 2.7 Jfx)  (df(x) = f(x)dx)

11. Iexdx = ¢
12. J‘eaxdx = ¢"/a

5. (b = L (b>0)
I alogb

14. Ilogx dx = xlogx—x
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15. J‘axloga dx =a” (a>0)
dx 1 X
16. = -t =
Ig2+x2 a an a
Dltanh X
dx  _ %J
17.J’ =0 or
ol = %L a+x 2.2
1 >
[Ra "a-—x (a”>x7)
E—icoth’lg
dx _ 0O
IS.I =[O0 or
—a’ EIL —a P
DZalng+a (x> a")
. -1 X
Elgln Id]
dx
19. J’— =0 or
[2 2 [
a —x -1X 2.2
E—cos Id] (a>x")
ad C
20.J’ - logCk + A/ x +a’[]
x2+a2 O
dx 1 1
21. [————— = —sec -
a
Ix &2_a2 la

29, (X
Ixalaz + xz

Forms Containing (a + bx)

For forms containing a + bx but not listed in the table, the substitution u =

" _ ( + b )n+l
23. J'(a + bx) dx = ﬁ— (T’l z —1)
n — n+2 a n+1
24. ]’x(a + bx) dx = bz(n N 2)((1 + bx) —m(a + bx)

1

[(a +bx)""° L (a+bx)""? | o(atbx)""!

2 n
25. [x (a+bx) dx =
I ( ) n+3 n+2 n+1

h3
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atbx may prove helpful.
X

(n#z-1,-2)

]



m+1 n
%( (atbx) ., __an J’xm(a+ bx)n_ldx
g mtntl m+n+1

O

O

or
m +b nd - 0 1 m+1 n+1 m n+l
26. J'x (a+bx) dx = V{_x (a + bx) +(m+n+2)J’x (a+bx) dx}

or

0 1
(m+n+1) {xm(a + bx)n+1 - maJ’xm+ 1(a + bx)ndx}

dx 1
27. = ~log(a +
7 Ia+bx bog(a bx)

dx 1

28. I(a + b)? T b(a+bx)

dx _ 1

29.
I(a +bx)> 2b(a+bx)*

E]]b%[a + bx—alog(a+ bx)]
xdx _ 0O
30. Ia+ b E or
%—bﬂzlog(u + bx)
I’al.JLx2 = L[log(a+bx)+ 4 }
(a + bx) b’ a+bx
32. [ X dx n:iz = —+ 2 - (n#1,2)
(a+bx)" b7 |(n=2)(a+bx)" (n—1)(a+bx)"
“dx _ 11 2 2
33. Iax+ ljcx = —S[E(a+bx) —2a(a+bx)+a 10g(a+bx)}
b
xCdx

2

_ 1[ a
34. = —|a+bx—2alog(a+ bx)— j

I(a+bx)2 v a+b

*d 1 2 8
35. IX—xS = —3{10%(“*‘?796)"' e 2}
(a+bx)’ b a*tbx 505+ bx)
36'_[ xdx _ l[ -1
(a+bx)"  b'L(n=-3)a+bx)""’

+ S a J (n#1,2,3)
(n=2)(a+bx)""" (n=1)(a+bx)"""
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dx 1, a+bx
37. [—2— = —=log™—=
Ix(a+bx) P

dx 1 1, a+bx

38. -
‘[x(a + bx)2 a(a+bx) ;2

dx _ 1[1[2a+bx[|2 X
39, [——— = — | =21 +]og }
Ix(a+bx)3 a 2Ua + bxU a+bx

40. J’—z dx = —i+%loga—+ bx
x (a+ bx) ax 4 *
2
dx 2bx—a b
41. = + — log
Ix3(a+ bx) 222 & et bx
4 dx - __a+2bx  2b, a+bx
_[ 2 27 2 398
x" (a+ bx) ax(a+bx) a

The Fourier Transforms

For a piecewise continuous function F (x) over a finite interval 0 = x = T, the finite Fourier cosine
transform of F(x) is

fdn) = J’:F(x)cosnx dx (n=0,12,...) (1)

If x ranges over the interval 0 = x = L, the substitution x' = Ttx/L allows the use of this definition,
also. The inverse transform is written

() = 170+ 2 3 f(mcosnx  (0<x<m 2)

2
m
where F(x) = W . We observe that F (x) = F(x) at points of continuity. The formula

fc(z)(”) = nF"(x)cosnx dx
I, .

—n’f(n) =F'(0) + (=1)"F'(m)

makes the finite Fourier cosine transform useful in certain boundary value problems.
Analogously, the finite Fourier sine transform of F(x) is

T

fi(n) = J'OF(x)sinnxdx (n=1,2,3,...) (4)

and

o

Zfs(n)sin nx (0<x<mn (5)

T 2
F = =
=73
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Corresponding to (3) we have

fs(z)(”) = J':F" (x)sinnx dx

(6)
= —n’f,(n) = nF(0) —n(-1)"F(m)
Fourier Transforms
If F(x) is defined for x = 0 and is piecewise continuous over any finite interval, and if
J‘m F(x)dx
0
is absolutely convergent, then
_ 2~
fa) = J; J’O F(x)cos(ax)dx (7)
is the Fourier cosine transform of F (x). Furthermore,
— 2 =)
F = /= )
(x) J;L)ﬁ(a)cos(ax)da (8)
T F = 0, an important property of the Fourier cosine transform,
) = [ [ mcos(ax)dx
9)
2 r—1
= Y s () @)
where lim %F = a,, makes it useful in the solution of many problems.
x -0 X
Under the same conditions,
R .
fa) = J;IO F(x)sin(ax)dx (10)
defines the Fourier sine transform of F (x), and
_ _ 2 - .
F(x) = /\/;_[ Ioﬁ(a)sm(ax)da (11)
Corresponding to (9), we have
0 2T
£9%a) = ﬁr [ 271”: sin (ax)dx
(12)
D NSNS AT
T /&=
Similarly, if F (x) is defined for —co < x < o0, and if f F(x) dx is absolutely convergent, then
1 *© iax
fla) = — F(x)e " dx (13)
NeXs J-_oo
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is the Fourier transform of F(x), and

Also, if

then

F(x) = J—;:rr Ijomf(a)e’i“"da

(n=1,2,...,r=1)

fa) = — [ Fx)e"dx = (efla)

Finite Sine Transforms

fi(n) F(x)
1 f(n) = J'UF(x)sin nxdx (n=1,2,...) F(x)
0
2 (1) fm) F(m-x)
3 1 T—x
n T
4 {_1}71+| E
n n
5 ﬂi)f 1
n
2 . nil O x when 0<x<1m/2
6 =sin—
n 2 m—x when M/2<x<TT
7 (=" x(1f =x")
" 61
8 1-(=1)" x(1m=x)
n 2
9 (1" 2[1-(=1)1 >
- X
n n
10 m(-1)" 5%—% ©
11 —2—[1-(-1)"¢"] o
n +c
12 sinh c(mm—x)
n e+ sinh c7T
13 - (k#0,1,2,...) sinh k(7T-x)
n -k sin k7T
nghen n=m
14 O sin mx
0O (m=1,2
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(14)

(15)



fn) F(x)

n n
15 nz—kz[l_(_l) cos k1 (k#1,2,...) coskx

d n n+m
0—5——[1-(-1)""]
O n —m
16 O cosmx
0 when n#m = 1,2, ...
H 0 when n=m
17 n (k#0,1,2,...) Tsin kx  x cosk( 1T—x)
-y 2ksin’km 2k sink7
v 2 b sin x
— = t —_—
18 n(‘b‘ s1) narcan 1-b cos x
19 1_[_1]”b" <) 2 arctan 2b sinzx
n T 1-b
Finite Cosine Transforms
f(n) F(x)
1 f(n) = INF(x) cosnxdx (n=0,1,2,...) F(x)
0
2 (-1)fn) F(1—x)
3 Owhenn=1,2,..;f(0) =T 1

01 when 0<x<71/2

4 Zsinﬂr; (0) =0 g
" 2 o) +1 when W/2<x<rT

1= (-1)" "
5 LG =2 .
n 2
_1 H. _ ng 5
6 Elif =2 ®
" 6 o
7 L, 0)=0 T—x 2_1-[
L:700) =
8 3n2§_—1)-"_61_—(i)_”;ﬂ(0) _n o
n? nt 4
9 (l)rerel »
n+c c
10 -1 coshc(7T—x)
wte ¢ sinh cmr
k .
11 nz_kz[(—l)ncosr[k—l] (k#20,1,2,...) sin kx
12 f—12"+rn_l;ﬂ(m) =0 (m=1,2,..) lsin e
n?—m? s
13 —— (k#0,1,2,..) _ cosk(m=x)
=k ksin k1T
14 owhenn=1,2,...;
cosmx

fe(m) = g(m: 1,2,...)
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Fourier Sine Transforms

F(x) fa)
1 Hl (0<x<a) /\/Z [1 —cosa}
m (x>a) s a
2 xP=1(0<p<1) Msmw
7T ar
3 Ginx ©<x<a L rnfaO-a)l _sinfa( o))
o (x>a) «/ET 1-a 1+a
. 2 [_a_
4 e A/;[ [1 + az}
5 xe=x/2 ae-a*/2
2 o N
6 cos% NG [sm—CEI —c057SD2D}
7 sin%z J2 [cos—C BHE+ sin— 5 S Bg%}
* C(y) and S(y) are the Fresnel integrals.
Cy) = L J’Vicos tdt
J2mdo i
1 1 .
S(y) = — r—51n tdt
Jamdo i
Fourier Cosine Transforms
F(x) fa)
1 Hl (0<x<a) JZ sinaa
0 (x>a) moa
2 ' (0<p<l) 2 [(p) 2Tt
mooar 2
3 Bcosx (0<x<a) 1 [sin[a(l—a)] +sin[a(1+a)]}
0o (x>a) J2m l-a 1+a
4 e 70+ ol
5 2 e—a’/2
6 cos%2 COSD__Z_E
2 EUZ m
7 sm% COSDZ 40
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Fourier Transforms

F(x) f(o)
0
1 sin ax BA/ET lal<a
x 0 2
oo lal >a
2 Eeiwx (p<X<q) ; eip(w+a)_e:q(w+a)
o (x<p,x>q) NoYis (w+a)
3 Ee*fX'i'fWX (x>0) 1
B (¢>0) L2T(w + a+ic)
] (x<0)
4 o Le—az/AP
e R(p)>0 J2p
1 a
5 . ——cos| — —=
cos px J2p [4p 4}
2
6 si 2 ——cos| — + =
sin px 5 [413 }
r(1-p)sin &
7 W7 (0<p<) p [Umpsin Ty
T ‘a‘(lfp)
NE s
cosh ax cos cosh?
? cosh 7x (-r<a<n) A/ZZ—Z
7T cosh 0 + cos a
sinh ax 1 _ sina
10 sinh 7T (-r<a<m J27 cosh o+ cosa
0—L— (x<a)
x| <a
11 H [ _ 2 /\/%T]o(ﬂa)
g o (Ixl > a)
O
sin [b /az+x2} 0o (lal > )
12— 0
— [T iade=a’) (il <p)
13 Bpn(x) (I« <1) i Jo+1(a)
8 0 (x>1) Ja
|
i)
14 g——— («<a) A[F]O(m/az+lzz)
B a —x 2
0 0 (Ixl > a)
O
H cosh [In/uz—xz}
15 g——— (d<a) A[H}o(m/of—bz)
H a—x 2
O 0 (Ixl > a)
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The following functions appear among the entries of the tables on transforms.

Function Definition Name
Ei(x v
) e—dv; or sometimes defined as
-V
. _ e
—Fi(—x) = J’ 7dv
Si(x) J'x g,
0 v
. J’x o5y dv; or sometimes defined as
Ci(x) ©
negative of this integral
2 &
erf(x) ETJ’OE dv Error function
_ 2 &~ Complementary function to
l—erf(x) = — (e dv
erfe(x) ) J;TIX error function
L,(x) % dd -(x"¢")  (n=0,1,2,..) Laguerre polynomial of degree n
P dx

Numerical Methods

Solution of Equations by Iteration
Fixed-Point Iteration for Solving f(x) = 0

Transform f(x) = 0 into the form x = g(x). Choose x, and compute x, = g(x,), X, = g(x,), and in general

Xpe1 = gx, (n=0,1,2,...)

Newton-Raphson Method for Solving f(x) = 0

fis assumed to have a continuous derivative f'. Use an approximate value x, obtained from the graph of
f. Then compute

- f(xo) - flx1)
B S VO
and in general
- f(x)
T )

Secant Method for Solving f(x) = 0

The secant method is obtained from Newton’s method by replacing the derivative f'(x) by the difference
quotient

— f(xn) _f(xn—l)

X, —X

f(x)

n n—1

Thus,

Xy —Xn-1

f(xn) _f(xn—l)

The secant method needs two starting values x, and x;.

Xpr1 = Xy _f(xn)
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Method of Regula Falsi for Solving f(x) = 0
Select two starting values x, and x,. Then compute

= %of () =x f (x0)

T T ) —f(x0)

If f(x,) Of(x,) <0, replace x; by x, in formula for x,, leaving x, unchanged, and then compute the next
approximation x;; otherwise, replace x, by x,, leaving x, unchanged, and compute the next approximation
x;. Continue in a similar manner.

Finite Differences

Uniform Interval h

If a function f(x) is tabulated at a uniform interval , that is, for arguments given by x,, = x, + nh, where
n is an integer, then the function f(x) may be denoted by f,.
This can be generalized so that for all values of p, and in particular for 0 = p = 1,

fixo*+ph) = flx,) = f,

where the argument designated x,, can be chosen quite arbitrarily.
The following table lists and defines the standard operators used in numerical analysis.

Symbol Function Definition
E Displacement Ef, = f,e1
A Forward difference Afp = fp 1 —fp
O Backward difference  [If, = f,—f,_,
A Divided difference
1) Central difference OfP = fp +% _f;,_%
u Average ufp = %%},;,%"’f_%%
At Backward sum Aflfp = Aflfp_l +fp_1
' Forward sum [|71fp =0 ot fp
-1 -1
5! Central sum o fp =9 fp—l +fp_1
2
D Differentiation Df, = -é-f(x) =1 D-é- 1o
dx h dp
X
I1(=D") Integration pr = J'Pf(x)dx = hJ‘pr dp

J(=AD"")  Definite integration ]fp hJ':+ lfp dp

I, A, V-, and 87! all imply the existence of an arbitrary constant that is determined by the initial
conditions of the problem.

Where no confusion can arise, the f can be omitted as, for example, in writing A, for Af,.

Higher differences are formed by successive operations, e.g.,
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Azfp = A2

P
= ADAP

= A(]‘;ﬁ-l_fp)
= AP+1_AP

= f:g+2_f;>+1_fp+1+fjp
= fp+z_2fp+1 +fp

Note that f, =4, =0, =6,.
The disposition of the differences and sums relative to the function values is as shown (the arguments
are omitted in these cases in the interest of clarity).

Calculus of Finite Differences

Forward difference scheme Backward difference scheme

Az fa A3 02 fa 02
AL A, Al 03 0, Os

I fa A’ o2 fa o
iy A A3 0 0o O;

i fo AL o3 fo 03
Iy A, A 0% u 0

A fi A o5 fi 0
Iy A, Al g a, a3

I f IS o7 f o

Central difference scheme

35 - 35 L.
5;;; & csji

33 fa a3 a4
& 3, 3,

5% fo 3, 3,
5! 3, 3

57 fi H o)
5;;é 3, 3}

53 f2 5 3,

In the forward difference scheme, the subscripts are seen to move forward into the difference table
and no fractional subscripts occur. In the backward difference scheme, the subscripts lie on diagonals
slanting backward into the table, while in the central difference scheme, the subscripts maintain their
positions and the odd-order subscripts are fractional.

All three, however, are merely alternative ways of labeling the same numerical quantities, as any
difference is the result of subtracting the number diagonally above it in the preceding column from that
diagonally below it in the preceding column, or, alternatively, it is the sum of the number diagonally
above it in the subsequent column with that immediately above it in its own column.
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In general, A;_%n =0, = [Ip'i%".
If a polynomial of degree r is tabulated exactly, i.e., without any round-off errors, then the rth
differences are constant.

The following table enables the simpler operators to be expressed in terms of the others:

E A o, U O
E — 1+A 1+u5+%52 (1-0y"
A E-1 — u5+§52 O(1-0)"
L | 1 1 1
) E'-E° A(1+A)2 2010 -1)° O(1-0) 2
—E" A(1L+0)™" ud— %52 —
1 1 1 ! 1
1R g0 L 3 153’ L0y (1 —0Y3
pooOSEFER QMO+ (1+50) ;2-0)(1-0)>

In addition to the above, there are other identities by means of which the above table can be extended,
such as

E=¢"=a0"
1

Lo 21 1
M= E 2+§5: E —56: COSh(EhD)

1 1

. 1 1
d=E:A=E0=00) = Zsinh(%hD)
Note the emergence of Taylor’s series from

fo = E'f,
ephD A

L+ phDfy+ ~p’ D, + ---
P P

Interpolation

Finite difference interpolation entails taking a given set of points and fitting a function to them. This
function is usually a polynomial. If the graph of f(x) is approximated over one tabular interval by a chord
of the form y = a + bx chosen to pass through the two points

(%0, f(x0)), (%0 + h, f(xo + 1))
the formula for the interpolated value is found to be
flxo + ph) = flxo) + p[f(xo + h)=f(x0)]
= flxo) + pbfy

If the graph of f(x) is approximated over two successive tabular intervals by a parabola of the form
¥y =a+ bx + cx? chosen to pass through the three points
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(0, f(x0)), (%0 + h, flxo + 1)), (x50 + 2h, f(xo + 2h))

the formula for the interpolated value is found to be

flxo + ph) = f(x,) + p[f(xo + h) —f(x)]
+ 2L+ 2) =2, + ) + )

= fo+ pOfy + p—(%l_—l)Azf()

Using polynomial curves of higher order to approximate the graph of f(x), a succession of interpolation
formulas involving higher differences of the tabulated function can be derived. These formulas provide,
in general, higher accuracy in the interpolated values.

Newton’s Forward Formula
1 1
fo = fot pDo+ =p(p—1)A0+ =p(p—1)(p —2)A; - 0<ps<1
21 31
Newton’s Backward Formula
1 1
f, = firpOg+ Sp(p+ DO+ =p(p+ 1)(p+2)05 -+ 0 < ps1
21 31
Gauss’ Forward Formula
= [, +pO,+ G0+ GO+ G5+ GO - 0<psl
» po, 1 1
2 2 2
Gauss’ Backward Formula

fi = fotpds+ GIol +G,8°+ GOl +Gd - 0<pst

2 2

pt+n-10
O 2n 0O

In the above, G,,

@D p+m

gp+nQ

G2n+1 Il]’l"’llj

Stirling’s Formula

f = f+ p55+5 O+ p60+S3B5 +63D+55+ =< ps]
Steffenson’s Formula
fo = fot 3p(p+1)0,=3(p=1)pS 1+ (S5 +8.)0,+ (=88 -+ =< ps<]
2 2 2 2
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= 1gp+nQ
In the above, S,,, 3Bn+ 10

- _p Op+tng
Sones 2n+20n+ 10

+n+ ]
Sons1t Sopsr = P Ll

O2n+20

+
Sons1=Soms2 = _Etpn _J;E

Bessel’s Formula

(= fo+ PO+ Bullss 5T+ Bidy+ Bu(80+ 8) + B:Sj+ - 0<ps<1
> om0 > >

Everett’s Formula

f, = (1=p)f, + pfy+ B0+ Fy0, + E, O, + F,0, + B3+ F, O+ - 0 < ps1

The coefficients in the above two formulae are related to each other and to the coefficients in the Gaussian
formulae by the identities

— =1
B2n = GZn = E(EZn + F2n)

1
2

— 1 =1
BZn+l = G2n+1_£G2n = E(FZn_EZn)

E2n EG2n_G2n+IEB2n_B2n+1
FZn EC;2n+IEBZn+B2n+1

Also, for g = 1 — p the following symmetrical relationships hold:

B,,(p) = B,.(q)
Byye1(p) = —=Byi1(q)
Ey(p) = Fp(q)
F,.(p) = Eb(q)

as can be seen from the tables of these coefficients.

Bessel’s Formula (Unmodified)

5
1

3 4 4 7
£ = f0+p5%+ BZEﬁéJr 5g+335%+ B,(5,+ 8,) + Bso, + B6E§g+ 5E+B75§+

2
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Lagrange’s Interpolation Formula

f(x) = (x—x)(x—x;)...(x—x,) ()

(%0 =21) (%9 = %2) ... (3 =,

(x=x0)(x—x,)...(x—x,)

s youpupey yy oo VS

ot (x=x0)(x—x)... (x —x,_1) £(x,)

(xn_xO)(xn_xl)"'(xn_xn—l)

Newton’s Divided Difference Formula

fx) = fo+ (x+ x0)f [x0, x1] + (=) (x = x,)f [, %1, %))

+oeet (x_x[))(x_xl)"'(x_xn—l)f[x()! Xps oees X,]

where

f[xOI xl] = }%
f[xlyxz] —f[xo, xl]

X, — X
FLto %1y ooy 1] = LK% xi__fix iy evor X ]

flxo x0, %] =

The layout of a divided difference table is similar to that of an ordinary finite difference table

X fa A—? A—?
A_l A_l
2 2
X fo A(2) A?}
A, A
! 1
X1 fl AT AA:

where the A’s are defined as follows:
A(’J Efr’ Ar+lE(ﬁ+l_ﬁ)/(xr+l_xr)
2

and in general N = %&2"]1 —AZ"*E(

P 1 (xr+n_xr—n)
2 2

2n+1  _ 2 2
and Artl =(Ar:l-l_Arn)/(xr+1+n_xr—n)
2
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Iterative Linear Interpolation

Neville’s modification of Aiken’s method of iterative linear interpolation is one of the most powerful
methods of interpolation when the arguments are unevenly spaced, as no prior knowledge of the order
of the approximating polynomial is necessary nor is a difference table required.

The values obtained are successive approximations to the required result and the process terminates
when there is no appreciable change. These values are, of course, useless if a new interpolation is required
when the procedure must be started afresh.

Defining
- (xs B x)fr - (xr - x)fs
fr, s
(xs _X,)
= (e =x)fr = (x =x)f,,
fr, st
(xt _xr)
f = (xu _x)fr, st (xt _x)fs, tu
s, Lu T
(xu _xr)
the computation is laid out as follows:
o (o -x) fo
fa
Xo (xo=%x) fo Fion
for o2
X1 (xi=x) fi fo,1,2
fi2

As the iterates tend to their limit, the common leading figures can be omitted.

Gauss’s Trigonometric Interpolation Formula

This is of greatest value when the function is periodic, i.e., a Fourier series expansion is possible.

fx)= ZCrﬂ

where C, = N,(x)/N,(x,) and

NG = [sin ES )i G0N, g G G ee ).y ()]

This is similar to the Lagrangian formula.

Reciprocal Differences

These are used when the quotient of two polynomials will give a better representation of the interpolating
function than a simple polynomial expression.
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A convenient layout is as shown below:

X fo

P
2
2
X fo Po
3
P Py
2 2
2 4
X fi P P
3
P P
2 2
2
X P>
pzl
2
x5 fs
X, 11— X
where p ==l
r+§ fr+1_fr
_Xre1 X
and g, =—_f—+fr
r+l r—l
2 2

241 _ Xptn+1 ~Xr—y 2n—1
In general, o E——F+tp0,1

1 2 21
rt = n

2 pr+l _pr

2 _ Xewn—Xr_y 2n-2
b = 21 —1 2n—1 + P,

pr+1 —P_1

7— =

2

The interpolation formula is expressed in the form of a continued fraction expansion.

The expansion corresponding to Newton’s forward difference interpolation formula, in the sense of
the differences involved, is

(x =)
Pt (2 —x1)
2
Pr—fo * (x—x,)
pil_pl + (%, —x3)
2 2

fx) = fo+

P—P; + (x—x,)

etc.

while that corresponding to Gauss’ forward formula is
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o) = e
Pt X, —X1)
p(z) —fot (x5 —x)
pi -p t (x4 —x,)

Po— Py + (x—x,)

etc.

Probability

Definitions

A sample space S associated with an experiment is a set S of elements such that any outcome of the
experiment corresponds to one and only one element of the set. An event E is a subset of a sample space
S. An element in a sample space is called a sample point or a simple event (unit subset of S).

Definition of Probability

If an experiment can occur in # mutually exclusive and equally likely ways, and if exactly m of these ways
correspond to an event E, then the probability of E is given by

_m
P(E) = &

If E is a subset of S, and if to each unit subset of S a non-negative number, called its probability, is
assigned, and if E is the union of two or more different simple events, then the probability of E, denoted
by P(E), is the sum of the probabilities of those simple events whose union is E.

Marginal and Conditional Probability

Suppose a sample space S is partitioned into rs disjoint subsets where the general subset is denoted by
E; N F,.. Then the marginal probability of E; is defined as

P(E) = _ZP(E,- nE)

and the marginal probability of F; is defined as

P(F) = ZP(Ei nF)
The conditional probability of E, given that F, has occurred, is defined as

and that of F,, given that E; has occurred, is defined as

P(F/E) = %, P(E)#0
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Probability Theorems

1. If @is the null set, P(¢) = 0.
2. If S is the sample space, P(S) = 1.
3. If E and F are two events,

P(EOF) = P(E) + P(F)—P(E n F)
4. If E and F are mutually exclusive events,
P(EOF) = P(E) + P(F)
5. If E and E are complementary events,
P(E) = 1-P(E)
6. The conditional probability of an event E, given an event F, is denoted by P(E/F) and is defined as

P(En F)

P(E/F) = R

where P(F) % 0.
7. Two events E and F are said to be independent if and only if

P(E n F) = P(E) CP(F)

E is said to be statistically independent of F if P(E/F) = P(E) and P(F/E) = P(F).

8. The events E,, E,, ..., E, are called mutually independent for all combinations if and only if every
combination of these events taken any number at a time is independent.

9. Bayes Theorem.
If E,, E,, ..., E, are n mutually exclusive events whose union is the sample space S, and E is any
arbitrary event of S such that P(E) Z 0, then

P(E,) CP(E/ Ey)

P(Ek/E) = =
Z‘ [P(E;) (P(E/E))]

Random Variable

A function whose domain is a sample space S and whose range is some set of real numbers is called a
random variable, denoted by X. The function X transforms sample points of S into points on the x-axis.
X will be called a discrete random variable if it is a random variable that assumes only a finite or
denumerable number of values on the x-axis. X will be called a continuous random variable if it assumes
a continuum of values on the x-axis.

Probability Function (Discrete Case)

The random variable X will be called a discrete random variable if there exists a function f such that
flx) 2 Oande(x,) =1 fori=1,2,3,... and such that for any event E,

P(E) = P[Xisin E] = Zf(x)

where 2 means sum f(x) over those values x; that are in E and where f(x) = P[X = x].
E
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The probability that the value of X is some real number x is given by f(x) =P [X = x], where fis called
the probability function of the random variable X.

Cumulative Distribution Function (Discrete Case)

The probability that the value of a random variable X is less than or equal to some real number x is
defined as

F(x) = P(X<x)
2 f(x), 0 <x <o

where the summation extends over those values of i such that x; < x.

Probability Density (Continuous Case)

The random variable X will be called a continuous random variable if there exists a function f such that
f(x) 20 and J’w f(x)dx = 1 for all x in interval —co <x < coand such that, for any event E,

P(E) = P(Xisin E) = IEf(x) dx

f(x) is called the probability density of the random variable X. The probability that X assumes any given
value of x is equal to zero, and the probability that it assumes a value on the interval from a to b, including
or excluding either endpoint, is equal to

J’abf(x) dx

Cumulative Distribution Function (Continuous Case)

The probability that the value of a random variable X is less than or equal to some real number x is
defined as

F(x) = P(X <x), —00 < x <00
= I: f(x) dx.
From the cumulative distribution, the density, if it exists, can be found from
_ dF(x)
fx) = LG

From the cumulative distribution

P(a<X<b) = P(X<b)-P(X <a)
= F(b)—F(a)

Mathematical Expectation

Expected Value
Let X be a random variable with density f(x). Then the expected value of X, E (X), is defined to be

E(X) = ZXf(x)
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if X is discrete and

E(X) = f’ xf (x) dx

—o0

if X is continuous. The expected value of a function g of a random variable X is defined as
E[g(X)] = 5 8(x) Hix)
if X is discrete and
E[g(X)] = [ 8(x) T(x)dx
if X is continuous.

Positional Notation

In our ordinary system of writing numbers, the value of any digit depends on its position in the number.
The value of a digit in any position is ten times the value of the same digit one position to the right, or
one-tenth the value of the same digit one position to the left. Thus, for example,

173246 = 1x10°+7x10' +3+ 2x L+ 4x L+ 6x L

10 10° 10°
There is no reason that a number other than 10 cannot be used as the base, or radix, of the number
system. In fact, bases of 2, 8, and 16 are commonly used in working with digital computers. When the

base used is not clear from the context, it is usually indicated as a parenthesized subscript or merely as
a subscript. Thus,

7435 = TX8 +4X8+3 = TX64+4X8+3 = 448+32+ 3 = 483,

_ 3 2 1 1 1 _
1011.101(2) 1x2°+0x%x2 +1><2+1+1><§+0><Z+1><§— 11.625(10)

Change of Base

In this section, it is assumed that all calculations will be performed in base 10, since this is the only base
in which most people can easily compute. However, there is no logical reason that some other base could
not be used for the computations.

To convert a number from another base into base 10:

Simply write down the digits of the number, with each one multiplied by its appropriate positional
value. Then perform the indicated computations in base 10, and write down the answer.

For examples, see the two examples in the previous section.

To convert a number from base 10 into another base:

The part of the number to the left of the point and the part to the right must be operated on separately.
For the integer part (the part to the left of the point):

a. Divide the number by the new base, getting an integer quotient and remainder.

b. Write down the remainder as the last digit of the number in the new base.

c. Using the quotient from the last division in place of the original number, repeat the above two
steps until the quotient becomes zero.
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For the fractional part (the part to the right of the point):

a. Multiply the number by the new base.

b. Write down the integral part of the product as the first digit of the fractional part in the new base.

c. Using the fractional part of the last product in place of the original number, repeat the above two
steps until the product becomes an integer or until the desired number of places have been

computed.

Examples

These examples show a convenient method of arranging the computations.
1. Convert 103.118,,, to base 8.
8 [103] 7
8 12| 4
1 147.074324...

The calculation of the fractional part could be carried out as far as desired.
It is a non-terminating fraction that will eventually repeat itself.

103.118(5) = 147.074324... ()

The calculations may be further shortened by not writing down the multiplier and divisor at each step
of the algorithm, as shown in the next example.
2. Convert 275.824,, to base 5.

5 @ 0 .824
@ 0 4.120

@ 1 0.600

2 3.000

275.824(5) = 2100.403 ;)

To convert from one base to another (neither of which is 10):

The easiest procedure is usually to convert first to base 10 and then to the desired base. However, there
are two exceptions to this:
1. If a computational facility is possessed in either of the bases, it may be used instead of base
10, and the appropriate one of the above methods may be applied.
2. If the two bases are different powers of the same number, the conversion may be done digit-
by-digit to the base that is the common root of both bases and then digit-by-digit back to the
other base.

Example: Convert 127.653 4, to base 16. (For base 16, the letters A—F are used for the digits
10(10)—15(10).)

The first step is to convert the number to base 2, simply by converting each digit to its binary equivalent:

127.653(5 = 001 010 111 [ 110 101 011,
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Now by simply regrouping the binary number into groups of four binary digits, starting at the point,
we convert to base 16:

127.653(5) = 101 0111 01101 0101 1, = 57.D58

Credits

Material in this section was reprinted from the following sources:

D.R. Lide, Ed., CRC Handbook of Chemistry and Physics, 73rd ed., Boca Raton, FL: CRC Press. 1992:
International System of Units (SI), conversion constants and multipliers (conversion of temperatures),
symbols and terminology for physical and chemical quantities, fundamental physical constants.

W.H. Beyer, Ed., CRC Standard Mathematical Tables and Formulae, 29th ed., Boca Raton, FL: CRC Press,
1991: Greek alphabet, conversion constants and multipliers (recommended decimal multiples and
submultiples, metric to English, English to metric, general, temperature factors), physical constants,
series expansion, integrals, the Fourier transforms, numerical methods, probability, positional
notation.

R.J. Tallarida, Pocket Book of Integrals and Mathematical Formulas, 2nd ed., Boca Raton, FL: CRC Press,
1992: Elementary algebra and geometry; determinants, matrices, and linear systems of equations;
trigonometry; analytic geometry; series; differential calculus; integral calculus; vector analysis;
special functions; statistics; tables of probability and statistics; table of derivatives.

Associations and Societies

American Concrete Institute (ACI)
PO Box 9094

Farmington Hills, MI 48333

Tel. # (248) 848-3700

Homepage: http://www.aci-int.net/

Founded in 1905, the American Concrete Institute (ACI) has grown into a chartered society with over
20,000 members worldwide. The ACI is a technical and educational nonprofit society dedicated to
improving the design, construction, manufacture, and maintenance of concrete structures.

Among ACI’s 20,000 members are structural designers, architects, civil engineers, educators, contrac-
tors, concrete craftsmen and technicians, representatives of materials suppliers, students, testing labora-
tories, and manufacturers from around the world. The 83 national and international chapters provide
the membership with opportunities to network with their peers and keep in tune with the activities of
ACI International.

Membership

Membership is open to individuals who work directly in, have an association with, or have an interest
in concrete. All members are encouraged to participate in the activities of the ACI International, which
include involvement on voluntary technical committees that develop ACI codes, standards, and reports.
Various levels of membership exist to meet particular needs. Student memberships are available.

Publications

Concrete International. Published monthly. Covers institute, chapter, and industry news. Several technical
articles following a specific theme appear in each issue.

ACI Materials Journal. Published bimonthly. Describes research in materials and concrete, related ACI
International standards, and committee reports.
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ACI Structural Journal. Published bimonthly. Includes technical papers on structural design and analysis,
state-of-the-art reviews on reinforced and structural elements, and the use and handling of concrete.

Other publications: ACI International makes available over 300 technical publication on concrete. Infor-
mation is also available in computer software and compact disc formats. A free 72-page publications
catalog describing what ACI International has to offer is available.

Other Activities

ACI International provides technical information in the form of high-quality conventions, seminars, and
symposia.

American Iron and Steel Institute (AISI)
1101 17th Street NW, Suite 1300
Washington, DC 20036

Tel. (202) 452-7100

Homepage: http://www.steel.org/

The American Iron and Steel Institute (AISI) was founded in 1908. The institute is a nonprofit association
of North American companies engaged in the iron and steel industry. AISI comprises 43 member companies
that produce the full range of steel mill products. Also included are iron ore mining companies and member
companies that produce raw steel, including integrated, electric furnace, and reconstituted mills. Member
companies account for more than two-thirds of the raw steel produced in the U.S., most of the steel
manufactured in Canada, and nearly two-thirds of the flat-rolled steel products manufactured in Mexico.

AISI has 230 associate members, including customers who distribute, fabricate, process, or consume
steel. Also included are companies and representatives of organizations that supply the steel industry
with materials, equipment, and services, as well as individuals associated with educational or research
organizations.

American National Standards Institute (ANSI)
Washington, DC, Headquarters

1819 L Street NW, 6th Fl.

Washington, DC 20036

Tel. (202) 293-8020

Fax. (202) 293-9287

New York City Office

25 West 43rd Street, 4th Floor
New York, NY, 10036

Tel. (212) 642-4900

Fax. (212) 398-0023

Homepage: http://www.ansi.org/
E-mail: info@ansi.org

Founded in 1918, the American National Standards Institute (ANSI) is a private, nonprofit membership
organization that coordinates the U.S. voluntary consensus standards system and approves American
National Standards. ANSI ensures that a single set of nonconflicting American National Standards are
developed by ANSI-accredited standards developers and that all interests concerned have the opportunity
to participate in the development process.

ANSI is the official U.S. representative to the International Accreditation Forum (IAF), the Interna-
tional Organization for Standardization (ISO), and, via the U.S. National Committee, the International
Electrotechnical Commission (IEC). ANSI is also the U.S. member of the Pacific Area Standards Congress
(PASC) and the Pan American Standards Commission (COPANT).
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Membership

ANSI consists of approximately 1300 national and international companies, 30 government agencies,
20 institutional members, and 250 professional, technical, trade, labor, and consumer organizations.
ANTSI offers no individual membership. For more information on membership, write to the Member
Services Department at the New York Office; call (212) 642-4900; or e-mail membership@ansi.org.

Publications

ANSI Reporter. Published monthly. Newsletter that updates members on major national and international
standards activities. It also provides information on the activities of the European standards bodies, CEN
and CENELEC.

Standards Action. Published biweekly. This newsletter outlines all national draft standards currently under
consideration for approval as American National Standards and solicits comments from readers. Com-
ments are also solicited on regional, international, and foreign standards. These comments are then
reviewed as part of the development process.

Catalog of American National Standards. Published annually. Provides a complete listing of all ANSI-
approved American National Standards. Supplements are also published.

American Railway Engineering and Maintenance-of-Way Association (AREMA)
8201 Corporate Drive, Suite 1125

Landover, MD 20785

Tel. (301) 459-3200

Fax. (301) 459-8077

Homepage: http://www.arema.org

The American Railway Engineering and Maintenance-of-Way Association (AREMA) was formed on
October 1, 1997, as the result of a merger of three engineering support associations, namely the American
Railway Bridge and Building Association, the American Railway Engineering Association, and the Road-
masters and Maintenance of Way Association, along with functions of the Communications and Signal
Division of the Association of American Railroads. The rich history of the predecessor organizations,
each having over 100 years of service to the rail industry, is the legacy of AREMA.

Each of the four groups — Roadmasters and Maintenance of Way Association, American Railway
Bridge and Building Association, American Railway Engineering Association, and Communications and
Signal Division — that came together to form AREMA have, in their own way, built an excellent
foundation upon which to base the new association, whose mission is the development and advancement
of both technical and practical knowledge and recommended practices pertaining to the design, con-
struction, and maintenance of railway infrastructure.

Membership

The basic qualifications for membership are five years of experience in the profession of maintaining,
operating, constructing, or locating railways. Graduation from a recognized college or university with a
degree in engineering is being taken as the equivalent of three years of experience.

Publications

AREMA Manual for Railway Engineering comprises the work of the association’s committees. The manual
is revised annually to make the latest in recommended practice information for railway engineering
available to all interested parties. The Portfolio of Trackwork Plans is also compiled and updated in the
same manner.

American Society of Civil Engineers (ASCE)
International Headquarters

1801 Alexander Bell Drive

Reston, VA 20191-4400
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Tel. 1-800-548-2723 (toll-free) / (703) 295-6300
Fax. (703) 295-6222 / (703) 295-6444 (fax-back)

Washington Office

1015 15th Street NW, Suite 600
Washington, DC 20005

Tel. (202) 789-2200

Fax. (202) 289-6797

Founded in 1852, the American Society of Civil Engineers (ASCE) is America's oldest national profes-
sional engineering society. The society has more than 115,000 individual members, including 6,500
international members in 137 nations. Memberships consist of individual professional engineers rather
than companies or organizations.

ASCE is organized geographically into 21 district councils, 83 sections, 143 branches, and 246 student
chapters and clubs. The society is governed by a 28-member board and is headquartered in the United
Engineering Center in New York City. A Washington, DC, office is maintained for government relations.

ASCE maintains the Civil Engineering Research Foundation to focus national attention and resources
on the research needs of the civil engineering profession. In addition, there are 25 technical divisions
and councils that foster the development and advancement of the science and practice of engineering.
ASCE has marked infrastructure renewal as a top national priority.

ASCE is the world’s largest publisher of civil engineering information, publishing over 63,000 pages
in 1994. Nearly 42% of the society's yearly income is generated through publication sales.

Membership

Membership applicants must meet the requirements set in the constitution of the ASCE. Various levels
of membership exist to meet particular needs. Student memberships are available to students who meet
the requirements of the constitution. Various entrance fees and dues are required of the various levels
of membership. Application materials may be requested by mailing the ASCE Membership Services
Department, phoning 800-548-2723 (toll-free in the United States) or 703-295-6300 (internationally),
faxing 703-295-6333, or e-mailing your request to memapp@asce.org.

Publications

Civil Engineering. Published monthly. This is the society’s official magazine and is mailed to all members of
ASCE. The magazine contains articles of current interest in the various fields of civil engineering, news of a
professional nature, and reports on the activities of ASCE and its members. Independently prepared papers
may be sent directly to the editor of Civil Engineering at 345 East 47th Street, New York, NY 10017-2398.

ASCE News. Published monthly. Mailed to all members without charge. It concentrates on the activities
of ASCE and its members, with the intent of promoting interest and participation in society programs.

Worldwide Projects. Published quarterly. A copublication of ASCE and Intercontinental Media, Inc.,
Westport, CT. Each issue provides engineers with articles giving insight into various topics related to
international civil engineering projects and doing business outside the U.S.

Journals published: Journal of Management in Engineering, published bimonthly, and Journal of Profes-
sional Issues in Engineering Education and Practice, published quarterly, present professional and technical
problems of broad interest and implications. ASCE also publishes significant reports of the Professional
Activities Committee and its constituent committees.

Other publications: The society also publishes transactions; standards; engineer-, owner-, and construc-
tion-related documents; the publications information and indexes; and newsletters. A civil engineering
database is also available. For inquiries on prices or to request a catalog or sample issues, e-mail
marketing@asce.org; phone 1-800-548-2723, ext. 6251 (U.S.), or 703-295-6163 (international); fax 703-
295-6278; or mail American Society of Civil Engineers, Publications Marketing Department, 1801 Alex-
ander Bell Drive, Reston, VA 20191-4400.
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American Society for Testing and Materials (ASTM)
International Headquarters

100 Barr Harbor Drive

West Conshohocken, PA 19428-2959

Tel. (610) 832-9500

Fax (610) 832-9555

Homepage: http://www.astm.org/

Founded in 1898, the American Society for Testing and Materials (ASTM) has grown into one of the
largest voluntary standards development systems in the world. ASTM is a nonprofit organization that
provides a forum for producers, users, ultimate consumers, and those having a general interest, such as
representatives of government and academia, to meet on common ground and write standards for
materials, products, systems, and services. From the work of 131 standard-writing committees, ASTM
publishes standard test methods, specifications, practices, guides, classifications, and terminology.
ASTM’s standards development activities encompass metals, paints, plastics, textiles, petroleum, con-
struction, energy, the environment, consumer products, medical services and devices, computerized
systems, electronics, and many other areas. All technical research and testing are done voluntarily by
more than 35,000 technically qualified ASTM members located throughout the world.

Membership

ASTM members pay an annual administrative fee of $75 for individual membership and $400 for an
organizational membership. The only other costs involved are the time and travel expenses of the
committee members and the donated use of members’ laboratory and research facilities.

Publications

Annual Book of ASTM Standards. A 70-volume set that includes standards and specs in the following
subject areas:

Iron and steel products

Nonferrous metal products

Metals test methods and analytical procedures
Construction

Petroleum products, lubricants, and fossil fuels
Medical devices and services

General methods and instrumentation

Paints, related coatings, and aromatics

Textiles

Plastics

Rubber

Electrical insulation and electronics

Water and environmental technology

Nuclear, solar, and geothermal energy

General products, chemical specialties, and end-use products

Discounts are applied when purchased as a complete set or when purchased by complete sections. Volumes
may also be purchased individually.

Standardization News. Published monthly.

Journals published: Journal of Testing and Evaluation; Cement, Concrete, and Aggregates; Geotechnical
Testing Journal, Journal of Composites Technology and Research; and Journal of Forensic Sciences.

ASTM also publishes books containing reports on state-of-the-art testing techniques and their possible
applications.
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American Water Works Association
Headquarters

6666 West Quincy Avenue

Denver, CO 80235

Tel. (303) 794-7711

Fax. (303) 794-7310

Government Affairs Office

1401 New York Avenue NW, Suite 640
Washington, DC 20005

Tel. (202) 628-8303

Fax. (202) 628-2846

Homepage: http://www.awwa.org/

The American Water Works Association (AWWA) was established in 1881 by 22 dedicated water supply
professionals. Membership has grown to more than 54,000 individuals and organizations. AWWA is an
international, nonprofit, scientific, and educational association dedicated to improving drinking water
for people everywhere. Today, AWWA has grown to be the largest organization of water supply profes-
sionals in the world, boasting members from virtually every country.

AWWA was formed to promote public health, safety, and welfare through the improvement of the
quality and quantity of water delivered to the public and through the development of public understand-
ing. AWWA also takes an active role in shaping the water industry’s direction through research, partici-
pation in legislative activities, development of products, procedural standards, and manuals of practice,
and it educates the public on water issues to promote a spirit of cooperation between consumers and
buyers.

Membership

Listed under individual memberships are active, affiliate, and student. Organization memberships include
utility, municipal service subscriber, small water system, associate, consultant, contractor, technical ser-
vice, and manufacturer’s agent, distributor, or representative. The association is governed by a board of
directors that establishes policy for the overall management and direction of association affairs.

Publications

AWWA is the world’s major publisher of drinking water information. Its publications cover just about
every area of interest in the water supply field. More than 500 titles are offered, covering all aspects of
water resources, water quality, treatment and distribution, utility management, and employee training
and safety.

Civil Engineering Research Foundation (CERF)
2131 K Street NW, Suite 700

Washington, DC 20037

Tel. (202) 785-6420

Fax. (202) 833-2604

Homepage: http://www.cerf.org/

The Civil Engineering Research Foundation (CERF) was created by the American Society of Civil Engi-
neers and began operation in 1989 to advance the civil engineering profession through research. CERF
is an industry-guided research organization that serves as a critical catalyst to help the design and
construction industry and the civil engineering profession expedite the transfer of research results into
practice through cooperative national programs. CERF integrates the efforts of industry, government,
and academia in order to implement research that is beyond the capabilities of any single organization.
CERF is an independent, nonprofit organization but remains affiliated with ASCE.
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Council on Tall Buildings and Urban Habitat
Lehigh University

117 ATLSS Drive

Bethlehem, PA 18015

Tel. (215) 758-3515

Fax (215) 758-4522

Homepage: http://www.lehigh.edu/~inctbuh/
E-mail: inctbuh@lehigh.edu

The Council on Tall Buildings and Urban Habitat is an international organization sponsored by engi-
neering, architectural, and planning professionals. The council was founded in 1969 and was known as
the Joint Committee on Tall Buildings until the name was changed in 1976 to its present form.

The council was established to study and report on all aspects of the planning, design, construction,
and operation of tall buildings. The council is also concerned with the role of tall buildings in the urban
environment and their impact thereon. However, the council is not an advocate for tall buildings per se,
but in those situations in which they are viable, the council seeks to encourage the use of the latest
knowledge in their implementation.

Membership

Membership is available to associations, commercial organizations, individual members, and students.
Membership is available to students at the rate of $10 per year. Membership fees vary for associations,
commercial organizations, and individuals.

Publications

A major focus of the council is the publication of a comprehensive monograph series for use by those
responsible for tall building planning and design. The original five-volume Monograph on the Planning
and Design of Tall Buildings was released between 1978 and 1981. This comprehensive source of tall
building information is the only such reference tool now available to the high-rise specialist. The volumes
are Planning and Environmental Criteria for Tall Buildings, Tall Building Systems and Concepts, Tall Building
Criteria and Loading, Structural Design of Tall Street Buildings, and Structural Design of Tall Concrete and
Masonry Buildings. These volumes are available as a set or sold separately. Updated monographs are
continually added to the series in order to keep information current.

Structural Stability Research Council
Headquarters

University of Florida

Department of Civil and Coastal Engineering
345 Weil Hall, PO Box 116580

Gainesville, FL 32611-6580

Tel. (352) 846-3874, ext. 1424

Fax. (352) 846-3978

Homepage: http://www.ce.ufl.edu/~ssrc/
Email: ssrc@ce.ufl.edu

The Structural Stability Research Council (formerly the Column Research Council) was founded in 1944
to review and resolve the conflicting opinions and practices that existed at the time with respect to
solutions to stability problems and to facilitate and promote economical and safe design. Now, more
than 50 years later, the council has broadened its scope within the field of structural stability, has become
international in character, and continues to seek solutions to stability problems.
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Membership

Various levels of membership exist for individuals. Organizations, companies, and firms concerned with
investigation and design of metal and composite structures are invited by the council to become sponsors,
participating organizations, participating companies, or participating firms.

Publications

The council maintains a library at its headquarters. Material from the library is available on request.

Transportation Research Board (TRB)
Cecil and Ida Green Building

2001 Wisconsin Avenue NW
Washington, DC 20007

Tel. (202) 334-2934

Fax (202) 334-2003

Homepage: http://www.nas.edu/trb/

The Transportation Research Board (TRB) is a unit of the National Research Council, which serves the
National Academy of Sciences and the National Academy of Engineering. The board’s purpose is to
stimulate research concerning the nature and performance of transportation systems, to disseminate the
information produced by the research, and to encourage the application of appropriate research findings.
The board’s program is carried out by more than 330 committees, task forces, and panels composed of
more than 3900 administrators, engineers, social scientists, attorneys, educators, and others concerned
with transportation; they serve without compensation.

The program is supported by state transportation and highway departments, modal administrations
of the U.S. Department of Transportation, and others interested in the development of transportation.

In November 1920, after a series of preliminary meetings and conferences, the National Research
Council created the Advisory Board on Highway Research. Four years later, the name was changed to
the Highway Research Board. During the late 1960s, the Highway Research Board expanded its scope to
all modes of transportation. The name was again changed in 1974 to the Transportation Research Board
to recognize its increased emphasis on a broadened approach to transportation problems and needs.

Today the Transportation Research Board devotes attention to all factors pertinent to the understand-
ing, design, and function of systems for the safe and efficient movement of people and goods, including
the following:

* Planning, design, construction, operation, safety, and maintenance of transportation facilities and
their components

+ Economics, financing, and administration of transportation facilities and services

+ Interaction of transportation systems with one another and with the physical, economic, and social
environment that they are designed to serve

Publications

One of the most important activities of the Transportation Research Board is the dissemination of current
research results. The mainstay of the TRB publications program is the Transportation Research Record
series. This series consists primarily of the papers delivered at the TRB annual meeting by authors from
all over the world.

Ethics

The following code of ethics was adopted by the American Society of Civil Engineers on September 25,
1976. The code of ethics became effective on January 1, 1977. The ASCE has since amended this code on
October 25, 1980, and April 17, 1993. The code of ethics shown below is in the most recent amended form.
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The ASCE adopted the fundamental principles of the ABET Code of Ethics of Engineers as accepted
by the Accreditation Board for Engineering and Technology, Inc. (ABET).

Code of Ethics!

Fundamental Principles

Engineers uphold and advance the integrity, honor and dignity of the engineering profession by:

Sl S

4.

using their knowledge and skill for the enhancement of human welfare;

being honest and impartial and serving with fidelity the public, their employers and clients;
striving to increase the competence and prestige of the engineering profession; and
supporting the professional and technical societies of their disciplines.

Fundamental Canons

1.

bt

Engineers shall hold paramount the safety, health and welfare of the public in the performance
of their professional duties.

Engineers shall perform services only in areas of their competence.

Engineers shall issue public statements only in an objective and truthful manner.

Engineers shall act in professional matters for each employer or client as faithful agents or trustees,
and shall avoid conflicts of interest.

Engineers shall build their professional reputation on the merit of their services and shall not
compete unfairly with others.

Engineers shall act in such a manner as to uphold and enhance the honor, integrity and dignity
of the engineering profession.

Engineers shall continue their professional development throughout their careers, and shall pro-
vide opportunities for the professional development of those engineers under their supervision.

Guidelines to Practice Under the Fundamental Canons of Ethics

CANON 1. Engineers shall hold paramount the safety, health and welfare of the public in the perfor-
mance of their professional duties.

a.

Engineers shall recognize that the lives, safety, health and welfare of the general public are depen-
dent upon engineering judgments, decisions and practices incorporated into structures, machines,
products, processes and devices.

Engineers shall approve or seal only those design documents, reviewed or prepared by them, which
are determined to be safe for public health and welfare in conformity with accepted engineering
standards.

Engineers whose professional judgment is overruled under circumstances where the safety, health
and welfare of the public are endangered, shall inform their clients or employers of the possible
consequences.

Engineers who have knowledge or reason to believe that another person or firm may be in violation
of any of the provisions of Canon 1 shall present such information to the proper authority in
writing and shall cooperate with the proper authority in furnishing such further information or
assistance as may be required.

Engineers should seek opportunities to be of constructive service in civic affairs and work for the
advancement of the safety, health and well-being of their communities.

Engineers should be committed to improving the environment to enhance the quality of life.

'Published with permission of the American Society of Civil Engineers.
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CANON 2. Engineers shall perform services only in areas of their competence.

a.

b.

Engineers shall undertake to perform engineering assignments only when qualified by education
or experience in the technical field of engineering involved.

Engineers may accept an assignment requiring education or experience outside of their own fields
of competence, provided their services are restricted to those phases of the project in which they
are qualified. All other phases of such project shall be performed by qualified associates, consultants
or employees.

Engineers shall not affix their signatures or seals to any engineering plan or document dealing
with subject matter in which they lack competence by virtue of education or experience or to any
such plan or document not reviewed or prepared under their supervisory control.

CANON 3. Engineers shall issue public statements only in an objective and truthful manner.

a.

b.

Engineers should endeavor to extend the public knowledge of engineering, and shall not participate
in the dissemination of untrue, unfair or exaggerated statements regarding engineering.
Engineers shall be objective and truthful in professional reports, statements or testimony. They
shall include all relevant and pertinent information in such reports, statements or testimony.
Engineers, when serving as expert witnesses, shall express an engineering opinion only when it is
founded upon adequate knowledge of the facts, upon a background of technical competence and
upon honest conviction.

Engineers shall issue no statements, criticisms or arguments on engineering matters which are
inspired or paid for by interested parties, unless they indicate on whose behalf the statements are
made.

Engineers shall be dignified and modest in explaining their work and merit, and will avoid any
act tending to promote their own interests at the expense of the integrity, honor and dignity of
the profession.

CANON 4. Engineers shall act in professional matters for each employer or client as faithful agents or

trustees, and shall avoid conflicts of interest.

Engineers shall avoid all known or potential conflicts of interest with their employers or clients
and shall promptly inform their employers or clients of any business association, interests or
circumstances which could influence their judgment or the quality of their services.

Engineers shall not accept compensation from more than one party for services on the same
project, or for services pertaining to the same project, unless the circumstances are fully disclosed
to and agreed to by all interested parties.

Engineers shall not solicit or accept gratuities, directly or indirectly, from contractors, their agents
or other parties dealing with their clients or employers in connection with work for which they
are responsible.

Engineers in public service as members, advisors or employees of a governmental body or depart-
ment shall not participate in considerations or actions with respect to services solicited or provided
by them or their organization in private or public engineering practice.

Engineers shall advise their employers or clients when, as a result of their studies, they believe a
project will not be successful.

Engineers shall not use confidential information coming to them in the course of their assignments
as a means of making personal profit if such action is adverse to the interests of their clients,
employers or the public.

Engineers shall not accept professional employment outside of their regular work or interest
without the knowledge of their employers.
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CANON 5. Engineers shall build their professional reputation on the merit of their services and shall
not compete unfairly with others.

a. Engineers shall not give, solicit or receive either directly or indirectly, any political contribution,
gratuity or unlawful consideration in order to secure work, exclusive of securing salaried positions
through employment agencies.

b. Engineers should negotiate contracts for professional services fairly and on the basis of demon-
strated competence and qualifications for the type of professional service required.

c. Engineers may request, propose or accept professional commissions on a contingent basis only
under circumstances in which their professional judgments would not be compromised.

d. Engineers shall not falsify or permit misrepresentation of their academic or professional qualifi-
cations or experience.

e. Engineers shall give proper credit for engineering work to those to whom credit is due, and shall
recognize the proprietary interests of others. Whenever possible, they shall name the person or
persons who may be responsible for designs, inventions, writings or other accomplishments.

f. Engineers may advertise professional services in a way that does not contain misleading language
or is in any other manner derogatory to the dignity of the profession. Examples of permissible
advertising are as follows:

Professional cards in recognized, dignified publications, and listings in rosters or directories
published by responsible organizations, provided that the cards or listings are consistent
in size and content and are in a section of the publication regularly devoted to such
professional cards.

Brochures which factually describe experience, facilities, personnel and capacity to render
service, providing they are not misleading with respect to the engineer’s participation in
projects described.

Display advertising in recognized dignified business and professional publications, providing
it is factual and is not misleading with respect to the engineer’s extent of participation in
projects described.

A statement of the engineers’ names or the name of the firm and statement of the type of
service posted on projects for which they render services.

Preparation or authorization of descriptive articles for the lay or technical press, which are
factual and dignified. Such articles shall not imply anything more than direct participation
in the project described.

Permission by engineers for their names to be used in commercial advertisements, such as may
be published by contractors, material suppliers, etc., only by means of a modest, dignified
notation acknowledging the engineers’ participation in the project described. Such per-
mission shall not include public endorsement of proprietary products.

g. Engineers shall not maliciously or falsely, directly or indirectly, injure the professional reputation,
prospects, practice or employment of another engineer or indiscriminately criticize another’s work.

h. Engineers shall not use equipment, supplies, laboratory or office facilities of their employers to
carry on outside private practice without the consent of their employers.

CANON 6. Engineers shall act in such a manner as to uphold and enhance the honor, integrity and
dignity of the engineering profession.

a. Engineers shall not knowingly act in a manner which will be derogatory to the honor, integrity
or dignity of the engineering profession or knowingly engage in business or professional practices
of a fraudulent, dishonest or unethical nature.
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CANON 7. Engineers shall continue their professional development throughout their careers, and shall
provide opportunities for the professional development of those engineers under their supervision.

a. Engineers should keep current in their specialty fields by engaging in professional practice, par-
ticipating in continuing education courses, reading in the technical literature and attending pro-
fessional meetings and seminars.

b. Engineers should encourage their engineering employees to become registered at the earliest
possible date.

c. Engineers should encourage engineering employees to attend and present papers at professional
and technical society meetings.

d. Engineers shall uphold the principle of mutually satisfying relationships between employers and
employees with respect to terms of employment, including professional grade descriptions, salary
ranges and fringe benefits.
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